Solve for x
x=\frac{5}{9}\approx 0.555555556
x = -\frac{11}{9} = -1\frac{2}{9} \approx -1.222222222
Graph
Share
Copied to clipboard
\frac{9\left(3x+1\right)^{2}}{9}=\frac{64}{9}
Divide both sides by 9.
\left(3x+1\right)^{2}=\frac{64}{9}
Dividing by 9 undoes the multiplication by 9.
3x+1=\frac{8}{3} 3x+1=-\frac{8}{3}
Take the square root of both sides of the equation.
3x+1-1=\frac{8}{3}-1 3x+1-1=-\frac{8}{3}-1
Subtract 1 from both sides of the equation.
3x=\frac{8}{3}-1 3x=-\frac{8}{3}-1
Subtracting 1 from itself leaves 0.
3x=\frac{5}{3}
Subtract 1 from \frac{8}{3}.
3x=-\frac{11}{3}
Subtract 1 from -\frac{8}{3}.
\frac{3x}{3}=\frac{\frac{5}{3}}{3} \frac{3x}{3}=-\frac{\frac{11}{3}}{3}
Divide both sides by 3.
x=\frac{\frac{5}{3}}{3} x=-\frac{\frac{11}{3}}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{5}{9}
Divide \frac{5}{3} by 3.
x=-\frac{11}{9}
Divide -\frac{11}{3} by 3.
x=\frac{5}{9} x=-\frac{11}{9}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}