Solve for m
m = -\frac{7}{2} = -3\frac{1}{2} = -3.5
m=-\frac{1}{2}=-0.5
Share
Copied to clipboard
9\left(4m^{2}+12m+9\right)=\left(2m-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2m+3\right)^{2}.
36m^{2}+108m+81=\left(2m-5\right)^{2}
Use the distributive property to multiply 9 by 4m^{2}+12m+9.
36m^{2}+108m+81=4m^{2}-20m+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-5\right)^{2}.
36m^{2}+108m+81-4m^{2}=-20m+25
Subtract 4m^{2} from both sides.
32m^{2}+108m+81=-20m+25
Combine 36m^{2} and -4m^{2} to get 32m^{2}.
32m^{2}+108m+81+20m=25
Add 20m to both sides.
32m^{2}+128m+81=25
Combine 108m and 20m to get 128m.
32m^{2}+128m+81-25=0
Subtract 25 from both sides.
32m^{2}+128m+56=0
Subtract 25 from 81 to get 56.
m=\frac{-128±\sqrt{128^{2}-4\times 32\times 56}}{2\times 32}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 32 for a, 128 for b, and 56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-128±\sqrt{16384-4\times 32\times 56}}{2\times 32}
Square 128.
m=\frac{-128±\sqrt{16384-128\times 56}}{2\times 32}
Multiply -4 times 32.
m=\frac{-128±\sqrt{16384-7168}}{2\times 32}
Multiply -128 times 56.
m=\frac{-128±\sqrt{9216}}{2\times 32}
Add 16384 to -7168.
m=\frac{-128±96}{2\times 32}
Take the square root of 9216.
m=\frac{-128±96}{64}
Multiply 2 times 32.
m=-\frac{32}{64}
Now solve the equation m=\frac{-128±96}{64} when ± is plus. Add -128 to 96.
m=-\frac{1}{2}
Reduce the fraction \frac{-32}{64} to lowest terms by extracting and canceling out 32.
m=-\frac{224}{64}
Now solve the equation m=\frac{-128±96}{64} when ± is minus. Subtract 96 from -128.
m=-\frac{7}{2}
Reduce the fraction \frac{-224}{64} to lowest terms by extracting and canceling out 32.
m=-\frac{1}{2} m=-\frac{7}{2}
The equation is now solved.
9\left(4m^{2}+12m+9\right)=\left(2m-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2m+3\right)^{2}.
36m^{2}+108m+81=\left(2m-5\right)^{2}
Use the distributive property to multiply 9 by 4m^{2}+12m+9.
36m^{2}+108m+81=4m^{2}-20m+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2m-5\right)^{2}.
36m^{2}+108m+81-4m^{2}=-20m+25
Subtract 4m^{2} from both sides.
32m^{2}+108m+81=-20m+25
Combine 36m^{2} and -4m^{2} to get 32m^{2}.
32m^{2}+108m+81+20m=25
Add 20m to both sides.
32m^{2}+128m+81=25
Combine 108m and 20m to get 128m.
32m^{2}+128m=25-81
Subtract 81 from both sides.
32m^{2}+128m=-56
Subtract 81 from 25 to get -56.
\frac{32m^{2}+128m}{32}=-\frac{56}{32}
Divide both sides by 32.
m^{2}+\frac{128}{32}m=-\frac{56}{32}
Dividing by 32 undoes the multiplication by 32.
m^{2}+4m=-\frac{56}{32}
Divide 128 by 32.
m^{2}+4m=-\frac{7}{4}
Reduce the fraction \frac{-56}{32} to lowest terms by extracting and canceling out 8.
m^{2}+4m+2^{2}=-\frac{7}{4}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+4m+4=-\frac{7}{4}+4
Square 2.
m^{2}+4m+4=\frac{9}{4}
Add -\frac{7}{4} to 4.
\left(m+2\right)^{2}=\frac{9}{4}
Factor m^{2}+4m+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+2\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
m+2=\frac{3}{2} m+2=-\frac{3}{2}
Simplify.
m=-\frac{1}{2} m=-\frac{7}{2}
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}