Solve for y
y = \frac{2 \sqrt{31} + 5}{9} \approx 1.792836525
y=\frac{5-2\sqrt{31}}{9}\approx -0.681725414
Graph
Share
Copied to clipboard
9y^{2}-10y-11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 9\left(-11\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -10 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 9\left(-11\right)}}{2\times 9}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100-36\left(-11\right)}}{2\times 9}
Multiply -4 times 9.
y=\frac{-\left(-10\right)±\sqrt{100+396}}{2\times 9}
Multiply -36 times -11.
y=\frac{-\left(-10\right)±\sqrt{496}}{2\times 9}
Add 100 to 396.
y=\frac{-\left(-10\right)±4\sqrt{31}}{2\times 9}
Take the square root of 496.
y=\frac{10±4\sqrt{31}}{2\times 9}
The opposite of -10 is 10.
y=\frac{10±4\sqrt{31}}{18}
Multiply 2 times 9.
y=\frac{4\sqrt{31}+10}{18}
Now solve the equation y=\frac{10±4\sqrt{31}}{18} when ± is plus. Add 10 to 4\sqrt{31}.
y=\frac{2\sqrt{31}+5}{9}
Divide 10+4\sqrt{31} by 18.
y=\frac{10-4\sqrt{31}}{18}
Now solve the equation y=\frac{10±4\sqrt{31}}{18} when ± is minus. Subtract 4\sqrt{31} from 10.
y=\frac{5-2\sqrt{31}}{9}
Divide 10-4\sqrt{31} by 18.
y=\frac{2\sqrt{31}+5}{9} y=\frac{5-2\sqrt{31}}{9}
The equation is now solved.
9y^{2}-10y-11=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9y^{2}-10y-11-\left(-11\right)=-\left(-11\right)
Add 11 to both sides of the equation.
9y^{2}-10y=-\left(-11\right)
Subtracting -11 from itself leaves 0.
9y^{2}-10y=11
Subtract -11 from 0.
\frac{9y^{2}-10y}{9}=\frac{11}{9}
Divide both sides by 9.
y^{2}-\frac{10}{9}y=\frac{11}{9}
Dividing by 9 undoes the multiplication by 9.
y^{2}-\frac{10}{9}y+\left(-\frac{5}{9}\right)^{2}=\frac{11}{9}+\left(-\frac{5}{9}\right)^{2}
Divide -\frac{10}{9}, the coefficient of the x term, by 2 to get -\frac{5}{9}. Then add the square of -\frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{10}{9}y+\frac{25}{81}=\frac{11}{9}+\frac{25}{81}
Square -\frac{5}{9} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{10}{9}y+\frac{25}{81}=\frac{124}{81}
Add \frac{11}{9} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{5}{9}\right)^{2}=\frac{124}{81}
Factor y^{2}-\frac{10}{9}y+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{9}\right)^{2}}=\sqrt{\frac{124}{81}}
Take the square root of both sides of the equation.
y-\frac{5}{9}=\frac{2\sqrt{31}}{9} y-\frac{5}{9}=-\frac{2\sqrt{31}}{9}
Simplify.
y=\frac{2\sqrt{31}+5}{9} y=\frac{5-2\sqrt{31}}{9}
Add \frac{5}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}