Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

9y^{2}+20y-800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-20±\sqrt{20^{2}-4\times 9\left(-800\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 20 for b, and -800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-20±\sqrt{400-4\times 9\left(-800\right)}}{2\times 9}
Square 20.
y=\frac{-20±\sqrt{400-36\left(-800\right)}}{2\times 9}
Multiply -4 times 9.
y=\frac{-20±\sqrt{400+28800}}{2\times 9}
Multiply -36 times -800.
y=\frac{-20±\sqrt{29200}}{2\times 9}
Add 400 to 28800.
y=\frac{-20±20\sqrt{73}}{2\times 9}
Take the square root of 29200.
y=\frac{-20±20\sqrt{73}}{18}
Multiply 2 times 9.
y=\frac{20\sqrt{73}-20}{18}
Now solve the equation y=\frac{-20±20\sqrt{73}}{18} when ± is plus. Add -20 to 20\sqrt{73}.
y=\frac{10\sqrt{73}-10}{9}
Divide -20+20\sqrt{73} by 18.
y=\frac{-20\sqrt{73}-20}{18}
Now solve the equation y=\frac{-20±20\sqrt{73}}{18} when ± is minus. Subtract 20\sqrt{73} from -20.
y=\frac{-10\sqrt{73}-10}{9}
Divide -20-20\sqrt{73} by 18.
y=\frac{10\sqrt{73}-10}{9} y=\frac{-10\sqrt{73}-10}{9}
The equation is now solved.
9y^{2}+20y-800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9y^{2}+20y-800-\left(-800\right)=-\left(-800\right)
Add 800 to both sides of the equation.
9y^{2}+20y=-\left(-800\right)
Subtracting -800 from itself leaves 0.
9y^{2}+20y=800
Subtract -800 from 0.
\frac{9y^{2}+20y}{9}=\frac{800}{9}
Divide both sides by 9.
y^{2}+\frac{20}{9}y=\frac{800}{9}
Dividing by 9 undoes the multiplication by 9.
y^{2}+\frac{20}{9}y+\left(\frac{10}{9}\right)^{2}=\frac{800}{9}+\left(\frac{10}{9}\right)^{2}
Divide \frac{20}{9}, the coefficient of the x term, by 2 to get \frac{10}{9}. Then add the square of \frac{10}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{20}{9}y+\frac{100}{81}=\frac{800}{9}+\frac{100}{81}
Square \frac{10}{9} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{20}{9}y+\frac{100}{81}=\frac{7300}{81}
Add \frac{800}{9} to \frac{100}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{10}{9}\right)^{2}=\frac{7300}{81}
Factor y^{2}+\frac{20}{9}y+\frac{100}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{10}{9}\right)^{2}}=\sqrt{\frac{7300}{81}}
Take the square root of both sides of the equation.
y+\frac{10}{9}=\frac{10\sqrt{73}}{9} y+\frac{10}{9}=-\frac{10\sqrt{73}}{9}
Simplify.
y=\frac{10\sqrt{73}-10}{9} y=\frac{-10\sqrt{73}-10}{9}
Subtract \frac{10}{9} from both sides of the equation.