Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-96x+256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-96\right)±\sqrt{\left(-96\right)^{2}-4\times 9\times 256}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -96 for b, and 256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-96\right)±\sqrt{9216-4\times 9\times 256}}{2\times 9}
Square -96.
x=\frac{-\left(-96\right)±\sqrt{9216-36\times 256}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-96\right)±\sqrt{9216-9216}}{2\times 9}
Multiply -36 times 256.
x=\frac{-\left(-96\right)±\sqrt{0}}{2\times 9}
Add 9216 to -9216.
x=-\frac{-96}{2\times 9}
Take the square root of 0.
x=\frac{96}{2\times 9}
The opposite of -96 is 96.
x=\frac{96}{18}
Multiply 2 times 9.
x=\frac{16}{3}
Reduce the fraction \frac{96}{18} to lowest terms by extracting and canceling out 6.
9x^{2}-96x+256=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-96x+256-256=-256
Subtract 256 from both sides of the equation.
9x^{2}-96x=-256
Subtracting 256 from itself leaves 0.
\frac{9x^{2}-96x}{9}=-\frac{256}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{96}{9}\right)x=-\frac{256}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{32}{3}x=-\frac{256}{9}
Reduce the fraction \frac{-96}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{32}{3}x+\left(-\frac{16}{3}\right)^{2}=-\frac{256}{9}+\left(-\frac{16}{3}\right)^{2}
Divide -\frac{32}{3}, the coefficient of the x term, by 2 to get -\frac{16}{3}. Then add the square of -\frac{16}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{3}x+\frac{256}{9}=\frac{-256+256}{9}
Square -\frac{16}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{3}x+\frac{256}{9}=0
Add -\frac{256}{9} to \frac{256}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{3}\right)^{2}=0
Factor x^{2}-\frac{32}{3}x+\frac{256}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{16}{3}=0 x-\frac{16}{3}=0
Simplify.
x=\frac{16}{3} x=\frac{16}{3}
Add \frac{16}{3} to both sides of the equation.
x=\frac{16}{3}
The equation is now solved. Solutions are the same.