Solve for x (complex solution)
x=\frac{11+\sqrt{167}i}{18}\approx 0.611111111+0.717935999i
x=\frac{-\sqrt{167}i+11}{18}\approx 0.611111111-0.717935999i
Graph
Share
Copied to clipboard
9x^{2}-6x+2-5x=-6
Subtract 5x from both sides.
9x^{2}-11x+2=-6
Combine -6x and -5x to get -11x.
9x^{2}-11x+2+6=0
Add 6 to both sides.
9x^{2}-11x+8=0
Add 2 and 6 to get 8.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 9\times 8}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -11 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 9\times 8}}{2\times 9}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-36\times 8}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-11\right)±\sqrt{121-288}}{2\times 9}
Multiply -36 times 8.
x=\frac{-\left(-11\right)±\sqrt{-167}}{2\times 9}
Add 121 to -288.
x=\frac{-\left(-11\right)±\sqrt{167}i}{2\times 9}
Take the square root of -167.
x=\frac{11±\sqrt{167}i}{2\times 9}
The opposite of -11 is 11.
x=\frac{11±\sqrt{167}i}{18}
Multiply 2 times 9.
x=\frac{11+\sqrt{167}i}{18}
Now solve the equation x=\frac{11±\sqrt{167}i}{18} when ± is plus. Add 11 to i\sqrt{167}.
x=\frac{-\sqrt{167}i+11}{18}
Now solve the equation x=\frac{11±\sqrt{167}i}{18} when ± is minus. Subtract i\sqrt{167} from 11.
x=\frac{11+\sqrt{167}i}{18} x=\frac{-\sqrt{167}i+11}{18}
The equation is now solved.
9x^{2}-6x+2-5x=-6
Subtract 5x from both sides.
9x^{2}-11x+2=-6
Combine -6x and -5x to get -11x.
9x^{2}-11x=-6-2
Subtract 2 from both sides.
9x^{2}-11x=-8
Subtract 2 from -6 to get -8.
\frac{9x^{2}-11x}{9}=-\frac{8}{9}
Divide both sides by 9.
x^{2}-\frac{11}{9}x=-\frac{8}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{11}{9}x+\left(-\frac{11}{18}\right)^{2}=-\frac{8}{9}+\left(-\frac{11}{18}\right)^{2}
Divide -\frac{11}{9}, the coefficient of the x term, by 2 to get -\frac{11}{18}. Then add the square of -\frac{11}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{9}x+\frac{121}{324}=-\frac{8}{9}+\frac{121}{324}
Square -\frac{11}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{9}x+\frac{121}{324}=-\frac{167}{324}
Add -\frac{8}{9} to \frac{121}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{18}\right)^{2}=-\frac{167}{324}
Factor x^{2}-\frac{11}{9}x+\frac{121}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{18}\right)^{2}}=\sqrt{-\frac{167}{324}}
Take the square root of both sides of the equation.
x-\frac{11}{18}=\frac{\sqrt{167}i}{18} x-\frac{11}{18}=-\frac{\sqrt{167}i}{18}
Simplify.
x=\frac{11+\sqrt{167}i}{18} x=\frac{-\sqrt{167}i+11}{18}
Add \frac{11}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}