Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(x^{2}-6x\right)
Factor out 9.
x\left(x-6\right)
Consider x^{2}-6x. Factor out x.
9x\left(x-6\right)
Rewrite the complete factored expression.
9x^{2}-54x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-54\right)±54}{2\times 9}
Take the square root of \left(-54\right)^{2}.
x=\frac{54±54}{2\times 9}
The opposite of -54 is 54.
x=\frac{54±54}{18}
Multiply 2 times 9.
x=\frac{108}{18}
Now solve the equation x=\frac{54±54}{18} when ± is plus. Add 54 to 54.
x=6
Divide 108 by 18.
x=\frac{0}{18}
Now solve the equation x=\frac{54±54}{18} when ± is minus. Subtract 54 from 54.
x=0
Divide 0 by 18.
9x^{2}-54x=9\left(x-6\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and 0 for x_{2}.