Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-4x-24=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 9\left(-24\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 9\left(-24\right)}}{2\times 9}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-36\left(-24\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-4\right)±\sqrt{16+864}}{2\times 9}
Multiply -36 times -24.
x=\frac{-\left(-4\right)±\sqrt{880}}{2\times 9}
Add 16 to 864.
x=\frac{-\left(-4\right)±4\sqrt{55}}{2\times 9}
Take the square root of 880.
x=\frac{4±4\sqrt{55}}{2\times 9}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{55}}{18}
Multiply 2 times 9.
x=\frac{4\sqrt{55}+4}{18}
Now solve the equation x=\frac{4±4\sqrt{55}}{18} when ± is plus. Add 4 to 4\sqrt{55}.
x=\frac{2\sqrt{55}+2}{9}
Divide 4+4\sqrt{55} by 18.
x=\frac{4-4\sqrt{55}}{18}
Now solve the equation x=\frac{4±4\sqrt{55}}{18} when ± is minus. Subtract 4\sqrt{55} from 4.
x=\frac{2-2\sqrt{55}}{9}
Divide 4-4\sqrt{55} by 18.
9x^{2}-4x-24=9\left(x-\frac{2\sqrt{55}+2}{9}\right)\left(x-\frac{2-2\sqrt{55}}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2+2\sqrt{55}}{9} for x_{1} and \frac{2-2\sqrt{55}}{9} for x_{2}.