Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-42x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 9\left(-3\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 9\left(-3\right)}}{2\times 9}
Square -42.
x=\frac{-\left(-42\right)±\sqrt{1764-36\left(-3\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-42\right)±\sqrt{1764+108}}{2\times 9}
Multiply -36 times -3.
x=\frac{-\left(-42\right)±\sqrt{1872}}{2\times 9}
Add 1764 to 108.
x=\frac{-\left(-42\right)±12\sqrt{13}}{2\times 9}
Take the square root of 1872.
x=\frac{42±12\sqrt{13}}{2\times 9}
The opposite of -42 is 42.
x=\frac{42±12\sqrt{13}}{18}
Multiply 2 times 9.
x=\frac{12\sqrt{13}+42}{18}
Now solve the equation x=\frac{42±12\sqrt{13}}{18} when ± is plus. Add 42 to 12\sqrt{13}.
x=\frac{2\sqrt{13}+7}{3}
Divide 42+12\sqrt{13} by 18.
x=\frac{42-12\sqrt{13}}{18}
Now solve the equation x=\frac{42±12\sqrt{13}}{18} when ± is minus. Subtract 12\sqrt{13} from 42.
x=\frac{7-2\sqrt{13}}{3}
Divide 42-12\sqrt{13} by 18.
9x^{2}-42x-3=9\left(x-\frac{2\sqrt{13}+7}{3}\right)\left(x-\frac{7-2\sqrt{13}}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7+2\sqrt{13}}{3} for x_{1} and \frac{7-2\sqrt{13}}{3} for x_{2}.