Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-36x+21=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 9\times 21}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 9\times 21}}{2\times 9}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-36\times 21}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-36\right)±\sqrt{1296-756}}{2\times 9}
Multiply -36 times 21.
x=\frac{-\left(-36\right)±\sqrt{540}}{2\times 9}
Add 1296 to -756.
x=\frac{-\left(-36\right)±6\sqrt{15}}{2\times 9}
Take the square root of 540.
x=\frac{36±6\sqrt{15}}{2\times 9}
The opposite of -36 is 36.
x=\frac{36±6\sqrt{15}}{18}
Multiply 2 times 9.
x=\frac{6\sqrt{15}+36}{18}
Now solve the equation x=\frac{36±6\sqrt{15}}{18} when ± is plus. Add 36 to 6\sqrt{15}.
x=\frac{\sqrt{15}}{3}+2
Divide 36+6\sqrt{15} by 18.
x=\frac{36-6\sqrt{15}}{18}
Now solve the equation x=\frac{36±6\sqrt{15}}{18} when ± is minus. Subtract 6\sqrt{15} from 36.
x=-\frac{\sqrt{15}}{3}+2
Divide 36-6\sqrt{15} by 18.
9x^{2}-36x+21=9\left(x-\left(\frac{\sqrt{15}}{3}+2\right)\right)\left(x-\left(-\frac{\sqrt{15}}{3}+2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2+\frac{\sqrt{15}}{3} for x_{1} and 2-\frac{\sqrt{15}}{3} for x_{2}.