Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-245x+500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-245\right)±\sqrt{\left(-245\right)^{2}-4\times 9\times 500}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -245 for b, and 500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-245\right)±\sqrt{60025-4\times 9\times 500}}{2\times 9}
Square -245.
x=\frac{-\left(-245\right)±\sqrt{60025-36\times 500}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-245\right)±\sqrt{60025-18000}}{2\times 9}
Multiply -36 times 500.
x=\frac{-\left(-245\right)±\sqrt{42025}}{2\times 9}
Add 60025 to -18000.
x=\frac{-\left(-245\right)±205}{2\times 9}
Take the square root of 42025.
x=\frac{245±205}{2\times 9}
The opposite of -245 is 245.
x=\frac{245±205}{18}
Multiply 2 times 9.
x=\frac{450}{18}
Now solve the equation x=\frac{245±205}{18} when ± is plus. Add 245 to 205.
x=25
Divide 450 by 18.
x=\frac{40}{18}
Now solve the equation x=\frac{245±205}{18} when ± is minus. Subtract 205 from 245.
x=\frac{20}{9}
Reduce the fraction \frac{40}{18} to lowest terms by extracting and canceling out 2.
x=25 x=\frac{20}{9}
The equation is now solved.
9x^{2}-245x+500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-245x+500-500=-500
Subtract 500 from both sides of the equation.
9x^{2}-245x=-500
Subtracting 500 from itself leaves 0.
\frac{9x^{2}-245x}{9}=-\frac{500}{9}
Divide both sides by 9.
x^{2}-\frac{245}{9}x=-\frac{500}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{245}{9}x+\left(-\frac{245}{18}\right)^{2}=-\frac{500}{9}+\left(-\frac{245}{18}\right)^{2}
Divide -\frac{245}{9}, the coefficient of the x term, by 2 to get -\frac{245}{18}. Then add the square of -\frac{245}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{245}{9}x+\frac{60025}{324}=-\frac{500}{9}+\frac{60025}{324}
Square -\frac{245}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{245}{9}x+\frac{60025}{324}=\frac{42025}{324}
Add -\frac{500}{9} to \frac{60025}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{245}{18}\right)^{2}=\frac{42025}{324}
Factor x^{2}-\frac{245}{9}x+\frac{60025}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{245}{18}\right)^{2}}=\sqrt{\frac{42025}{324}}
Take the square root of both sides of the equation.
x-\frac{245}{18}=\frac{205}{18} x-\frac{245}{18}=-\frac{205}{18}
Simplify.
x=25 x=\frac{20}{9}
Add \frac{245}{18} to both sides of the equation.