Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=6 ab=9\left(-8\right)=-72
Factor the expression by grouping. First, the expression needs to be rewritten as 9x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=-6 b=12
The solution is the pair that gives sum 6.
\left(9x^{2}-6x\right)+\left(12x-8\right)
Rewrite 9x^{2}+6x-8 as \left(9x^{2}-6x\right)+\left(12x-8\right).
3x\left(3x-2\right)+4\left(3x-2\right)
Factor out 3x in the first and 4 in the second group.
\left(3x-2\right)\left(3x+4\right)
Factor out common term 3x-2 by using distributive property.
9x^{2}+6x-8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 9\left(-8\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\times 9\left(-8\right)}}{2\times 9}
Square 6.
x=\frac{-6±\sqrt{36-36\left(-8\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-6±\sqrt{36+288}}{2\times 9}
Multiply -36 times -8.
x=\frac{-6±\sqrt{324}}{2\times 9}
Add 36 to 288.
x=\frac{-6±18}{2\times 9}
Take the square root of 324.
x=\frac{-6±18}{18}
Multiply 2 times 9.
x=\frac{12}{18}
Now solve the equation x=\frac{-6±18}{18} when ± is plus. Add -6 to 18.
x=\frac{2}{3}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{24}{18}
Now solve the equation x=\frac{-6±18}{18} when ± is minus. Subtract 18 from -6.
x=-\frac{4}{3}
Reduce the fraction \frac{-24}{18} to lowest terms by extracting and canceling out 6.
9x^{2}+6x-8=9\left(x-\frac{2}{3}\right)\left(x-\left(-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and -\frac{4}{3} for x_{2}.
9x^{2}+6x-8=9\left(x-\frac{2}{3}\right)\left(x+\frac{4}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9x^{2}+6x-8=9\times \frac{3x-2}{3}\left(x+\frac{4}{3}\right)
Subtract \frac{2}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
9x^{2}+6x-8=9\times \frac{3x-2}{3}\times \frac{3x+4}{3}
Add \frac{4}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9x^{2}+6x-8=9\times \frac{\left(3x-2\right)\left(3x+4\right)}{3\times 3}
Multiply \frac{3x-2}{3} times \frac{3x+4}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
9x^{2}+6x-8=9\times \frac{\left(3x-2\right)\left(3x+4\right)}{9}
Multiply 3 times 3.
9x^{2}+6x-8=\left(3x-2\right)\left(3x+4\right)
Cancel out 9, the greatest common factor in 9 and 9.