Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}=44-5
Subtract 5 from both sides.
9x^{2}=39
Subtract 5 from 44 to get 39.
x^{2}=\frac{39}{9}
Divide both sides by 9.
x^{2}=\frac{13}{3}
Reduce the fraction \frac{39}{9} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{39}}{3} x=-\frac{\sqrt{39}}{3}
Take the square root of both sides of the equation.
9x^{2}+5-44=0
Subtract 44 from both sides.
9x^{2}-39=0
Subtract 44 from 5 to get -39.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-39\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-39\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-39\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{1404}}{2\times 9}
Multiply -36 times -39.
x=\frac{0±6\sqrt{39}}{2\times 9}
Take the square root of 1404.
x=\frac{0±6\sqrt{39}}{18}
Multiply 2 times 9.
x=\frac{\sqrt{39}}{3}
Now solve the equation x=\frac{0±6\sqrt{39}}{18} when ± is plus.
x=-\frac{\sqrt{39}}{3}
Now solve the equation x=\frac{0±6\sqrt{39}}{18} when ± is minus.
x=\frac{\sqrt{39}}{3} x=-\frac{\sqrt{39}}{3}
The equation is now solved.