Solve for d
d = \frac{3}{2} = 1\frac{1}{2} = 1.5
d = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
9d^{2}=\frac{81}{4}
Subtract 52 from \frac{289}{4} to get \frac{81}{4}.
9d^{2}-\frac{81}{4}=0
Subtract \frac{81}{4} from both sides.
4d^{2}-9=0
Divide both sides by \frac{9}{4}.
\left(2d-3\right)\left(2d+3\right)=0
Consider 4d^{2}-9. Rewrite 4d^{2}-9 as \left(2d\right)^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
d=\frac{3}{2} d=-\frac{3}{2}
To find equation solutions, solve 2d-3=0 and 2d+3=0.
9d^{2}=\frac{81}{4}
Subtract 52 from \frac{289}{4} to get \frac{81}{4}.
d^{2}=\frac{\frac{81}{4}}{9}
Divide both sides by 9.
d^{2}=\frac{81}{4\times 9}
Express \frac{\frac{81}{4}}{9} as a single fraction.
d^{2}=\frac{81}{36}
Multiply 4 and 9 to get 36.
d^{2}=\frac{9}{4}
Reduce the fraction \frac{81}{36} to lowest terms by extracting and canceling out 9.
d=\frac{3}{2} d=-\frac{3}{2}
Take the square root of both sides of the equation.
9d^{2}=\frac{81}{4}
Subtract 52 from \frac{289}{4} to get \frac{81}{4}.
9d^{2}-\frac{81}{4}=0
Subtract \frac{81}{4} from both sides.
d=\frac{0±\sqrt{0^{2}-4\times 9\left(-\frac{81}{4}\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -\frac{81}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{0±\sqrt{-4\times 9\left(-\frac{81}{4}\right)}}{2\times 9}
Square 0.
d=\frac{0±\sqrt{-36\left(-\frac{81}{4}\right)}}{2\times 9}
Multiply -4 times 9.
d=\frac{0±\sqrt{729}}{2\times 9}
Multiply -36 times -\frac{81}{4}.
d=\frac{0±27}{2\times 9}
Take the square root of 729.
d=\frac{0±27}{18}
Multiply 2 times 9.
d=\frac{3}{2}
Now solve the equation d=\frac{0±27}{18} when ± is plus. Reduce the fraction \frac{27}{18} to lowest terms by extracting and canceling out 9.
d=-\frac{3}{2}
Now solve the equation d=\frac{0±27}{18} when ± is minus. Reduce the fraction \frac{-27}{18} to lowest terms by extracting and canceling out 9.
d=\frac{3}{2} d=-\frac{3}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}