Solve for a
a=\frac{13}{3}+\frac{1}{3}i\approx 4.333333333+0.333333333i
a=\frac{13}{3}-\frac{1}{3}i\approx 4.333333333-0.333333333i
Share
Copied to clipboard
9a^{2}-78a+170=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-78\right)±\sqrt{\left(-78\right)^{2}-4\times 9\times 170}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -78 for b, and 170 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-78\right)±\sqrt{6084-4\times 9\times 170}}{2\times 9}
Square -78.
a=\frac{-\left(-78\right)±\sqrt{6084-36\times 170}}{2\times 9}
Multiply -4 times 9.
a=\frac{-\left(-78\right)±\sqrt{6084-6120}}{2\times 9}
Multiply -36 times 170.
a=\frac{-\left(-78\right)±\sqrt{-36}}{2\times 9}
Add 6084 to -6120.
a=\frac{-\left(-78\right)±6i}{2\times 9}
Take the square root of -36.
a=\frac{78±6i}{2\times 9}
The opposite of -78 is 78.
a=\frac{78±6i}{18}
Multiply 2 times 9.
a=\frac{78+6i}{18}
Now solve the equation a=\frac{78±6i}{18} when ± is plus. Add 78 to 6i.
a=\frac{13}{3}+\frac{1}{3}i
Divide 78+6i by 18.
a=\frac{78-6i}{18}
Now solve the equation a=\frac{78±6i}{18} when ± is minus. Subtract 6i from 78.
a=\frac{13}{3}-\frac{1}{3}i
Divide 78-6i by 18.
a=\frac{13}{3}+\frac{1}{3}i a=\frac{13}{3}-\frac{1}{3}i
The equation is now solved.
9a^{2}-78a+170=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9a^{2}-78a+170-170=-170
Subtract 170 from both sides of the equation.
9a^{2}-78a=-170
Subtracting 170 from itself leaves 0.
\frac{9a^{2}-78a}{9}=-\frac{170}{9}
Divide both sides by 9.
a^{2}+\left(-\frac{78}{9}\right)a=-\frac{170}{9}
Dividing by 9 undoes the multiplication by 9.
a^{2}-\frac{26}{3}a=-\frac{170}{9}
Reduce the fraction \frac{-78}{9} to lowest terms by extracting and canceling out 3.
a^{2}-\frac{26}{3}a+\left(-\frac{13}{3}\right)^{2}=-\frac{170}{9}+\left(-\frac{13}{3}\right)^{2}
Divide -\frac{26}{3}, the coefficient of the x term, by 2 to get -\frac{13}{3}. Then add the square of -\frac{13}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{26}{3}a+\frac{169}{9}=\frac{-170+169}{9}
Square -\frac{13}{3} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{26}{3}a+\frac{169}{9}=-\frac{1}{9}
Add -\frac{170}{9} to \frac{169}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{13}{3}\right)^{2}=-\frac{1}{9}
Factor a^{2}-\frac{26}{3}a+\frac{169}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{13}{3}\right)^{2}}=\sqrt{-\frac{1}{9}}
Take the square root of both sides of the equation.
a-\frac{13}{3}=\frac{1}{3}i a-\frac{13}{3}=-\frac{1}{3}i
Simplify.
a=\frac{13}{3}+\frac{1}{3}i a=\frac{13}{3}-\frac{1}{3}i
Add \frac{13}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}