Solve for x
x=\frac{2\left(y+18\right)}{9-y}
y\neq 9
Solve for y
y=\frac{9\left(x-4\right)}{x+2}
x\neq -2
Graph
Share
Copied to clipboard
9x-36=y\left(x+2\right)
Use the distributive property to multiply 9 by x-4.
9x-36=yx+2y
Use the distributive property to multiply y by x+2.
9x-36-yx=2y
Subtract yx from both sides.
9x-yx=2y+36
Add 36 to both sides.
\left(9-y\right)x=2y+36
Combine all terms containing x.
\frac{\left(9-y\right)x}{9-y}=\frac{2y+36}{9-y}
Divide both sides by -y+9.
x=\frac{2y+36}{9-y}
Dividing by -y+9 undoes the multiplication by -y+9.
x=\frac{2\left(y+18\right)}{9-y}
Divide 36+2y by -y+9.
9x-36=y\left(x+2\right)
Use the distributive property to multiply 9 by x-4.
9x-36=yx+2y
Use the distributive property to multiply y by x+2.
yx+2y=9x-36
Swap sides so that all variable terms are on the left hand side.
\left(x+2\right)y=9x-36
Combine all terms containing y.
\frac{\left(x+2\right)y}{x+2}=\frac{9x-36}{x+2}
Divide both sides by x+2.
y=\frac{9x-36}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
y=\frac{9\left(x-4\right)}{x+2}
Divide -36+9x by x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}