Evaluate
\frac{296}{1407}\approx 0.210376688
Factor
\frac{2 ^ {3} \cdot 37}{3 \cdot 7 \cdot 67} = 0.2103766879886283
Quiz
Arithmetic
5 problems similar to:
9 \frac{ 1 }{ 4 } \div 8 \frac{ 3 }{ 8 } \div 5 \frac{ 1 }{ 4 }
Share
Copied to clipboard
\frac{\frac{9\times 4+1}{4}\times 4}{\frac{8\times 8+3}{8}\left(5\times 4+1\right)}
Divide \frac{\frac{9\times 4+1}{4}}{\frac{8\times 8+3}{8}} by \frac{5\times 4+1}{4} by multiplying \frac{\frac{9\times 4+1}{4}}{\frac{8\times 8+3}{8}} by the reciprocal of \frac{5\times 4+1}{4}.
\frac{\frac{36+1}{4}\times 4}{\frac{8\times 8+3}{8}\left(5\times 4+1\right)}
Multiply 9 and 4 to get 36.
\frac{\frac{37}{4}\times 4}{\frac{8\times 8+3}{8}\left(5\times 4+1\right)}
Add 36 and 1 to get 37.
\frac{37}{\frac{8\times 8+3}{8}\left(5\times 4+1\right)}
Cancel out 4 and 4.
\frac{37}{\frac{64+3}{8}\left(5\times 4+1\right)}
Multiply 8 and 8 to get 64.
\frac{37}{\frac{67}{8}\left(5\times 4+1\right)}
Add 64 and 3 to get 67.
\frac{37}{\frac{67}{8}\left(20+1\right)}
Multiply 5 and 4 to get 20.
\frac{37}{\frac{67}{8}\times 21}
Add 20 and 1 to get 21.
\frac{37}{\frac{67\times 21}{8}}
Express \frac{67}{8}\times 21 as a single fraction.
\frac{37}{\frac{1407}{8}}
Multiply 67 and 21 to get 1407.
37\times \frac{8}{1407}
Divide 37 by \frac{1407}{8} by multiplying 37 by the reciprocal of \frac{1407}{8}.
\frac{37\times 8}{1407}
Express 37\times \frac{8}{1407} as a single fraction.
\frac{296}{1407}
Multiply 37 and 8 to get 296.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}