Evaluate
\frac{358}{15}\approx 23.866666667
Factor
\frac{2 \cdot 179}{3 \cdot 5} = 23\frac{13}{15} = 23.866666666666667
Quiz
Arithmetic
5 problems similar to:
9 \frac { 11 } { 15 } + 9 \frac { 3 } { 5 } + 4 \frac { 8 } { 15 }
Share
Copied to clipboard
\frac{135+11}{15}+\frac{9\times 5+3}{5}+\frac{4\times 15+8}{15}
Multiply 9 and 15 to get 135.
\frac{146}{15}+\frac{9\times 5+3}{5}+\frac{4\times 15+8}{15}
Add 135 and 11 to get 146.
\frac{146}{15}+\frac{45+3}{5}+\frac{4\times 15+8}{15}
Multiply 9 and 5 to get 45.
\frac{146}{15}+\frac{48}{5}+\frac{4\times 15+8}{15}
Add 45 and 3 to get 48.
\frac{146}{15}+\frac{144}{15}+\frac{4\times 15+8}{15}
Least common multiple of 15 and 5 is 15. Convert \frac{146}{15} and \frac{48}{5} to fractions with denominator 15.
\frac{146+144}{15}+\frac{4\times 15+8}{15}
Since \frac{146}{15} and \frac{144}{15} have the same denominator, add them by adding their numerators.
\frac{290}{15}+\frac{4\times 15+8}{15}
Add 146 and 144 to get 290.
\frac{58}{3}+\frac{4\times 15+8}{15}
Reduce the fraction \frac{290}{15} to lowest terms by extracting and canceling out 5.
\frac{58}{3}+\frac{60+8}{15}
Multiply 4 and 15 to get 60.
\frac{58}{3}+\frac{68}{15}
Add 60 and 8 to get 68.
\frac{290}{15}+\frac{68}{15}
Least common multiple of 3 and 15 is 15. Convert \frac{58}{3} and \frac{68}{15} to fractions with denominator 15.
\frac{290+68}{15}
Since \frac{290}{15} and \frac{68}{15} have the same denominator, add them by adding their numerators.
\frac{358}{15}
Add 290 and 68 to get 358.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}