Evaluate
\frac{30}{7}\approx 4.285714286
Factor
\frac{2 \cdot 3 \cdot 5}{7} = 4\frac{2}{7} = 4.285714285714286
Quiz
Arithmetic
5 problems similar to:
9 \frac { 1 } { 3 } - \frac { 5 } { 7 } - 4 \frac { 2 } { 6 } =
Share
Copied to clipboard
\frac{27+1}{3}-\frac{5}{7}-\frac{4\times 6+2}{6}
Multiply 9 and 3 to get 27.
\frac{28}{3}-\frac{5}{7}-\frac{4\times 6+2}{6}
Add 27 and 1 to get 28.
\frac{196}{21}-\frac{15}{21}-\frac{4\times 6+2}{6}
Least common multiple of 3 and 7 is 21. Convert \frac{28}{3} and \frac{5}{7} to fractions with denominator 21.
\frac{196-15}{21}-\frac{4\times 6+2}{6}
Since \frac{196}{21} and \frac{15}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{181}{21}-\frac{4\times 6+2}{6}
Subtract 15 from 196 to get 181.
\frac{181}{21}-\frac{24+2}{6}
Multiply 4 and 6 to get 24.
\frac{181}{21}-\frac{26}{6}
Add 24 and 2 to get 26.
\frac{181}{21}-\frac{13}{3}
Reduce the fraction \frac{26}{6} to lowest terms by extracting and canceling out 2.
\frac{181}{21}-\frac{91}{21}
Least common multiple of 21 and 3 is 21. Convert \frac{181}{21} and \frac{13}{3} to fractions with denominator 21.
\frac{181-91}{21}
Since \frac{181}{21} and \frac{91}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{90}{21}
Subtract 91 from 181 to get 90.
\frac{30}{7}
Reduce the fraction \frac{90}{21} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}