9 \% +1 \% \times { x }^{ 2 } \times 9+ \sqrt{ 4+4+6+2 } +9x=0
Solve for x
x=\frac{\sqrt{22091}}{3}-50\approx -0.456528628
x=-\frac{\sqrt{22091}}{3}-50\approx -99.543471372
Graph
Share
Copied to clipboard
\frac{9}{100}+\frac{9}{100}x^{2}+\sqrt{4+4+6+2}+9x=0
Multiply \frac{1}{100} and 9 to get \frac{9}{100}.
\frac{9}{100}+\frac{9}{100}x^{2}+\sqrt{8+6+2}+9x=0
Add 4 and 4 to get 8.
\frac{9}{100}+\frac{9}{100}x^{2}+\sqrt{14+2}+9x=0
Add 8 and 6 to get 14.
\frac{9}{100}+\frac{9}{100}x^{2}+\sqrt{16}+9x=0
Add 14 and 2 to get 16.
\frac{9}{100}+\frac{9}{100}x^{2}+4+9x=0
Calculate the square root of 16 and get 4.
\frac{409}{100}+\frac{9}{100}x^{2}+9x=0
Add \frac{9}{100} and 4 to get \frac{409}{100}.
\frac{9}{100}x^{2}+9x+\frac{409}{100}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\times \frac{9}{100}\times \frac{409}{100}}}{2\times \frac{9}{100}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{9}{100} for a, 9 for b, and \frac{409}{100} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times \frac{9}{100}\times \frac{409}{100}}}{2\times \frac{9}{100}}
Square 9.
x=\frac{-9±\sqrt{81-\frac{9}{25}\times \frac{409}{100}}}{2\times \frac{9}{100}}
Multiply -4 times \frac{9}{100}.
x=\frac{-9±\sqrt{81-\frac{3681}{2500}}}{2\times \frac{9}{100}}
Multiply -\frac{9}{25} times \frac{409}{100} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-9±\sqrt{\frac{198819}{2500}}}{2\times \frac{9}{100}}
Add 81 to -\frac{3681}{2500}.
x=\frac{-9±\frac{3\sqrt{22091}}{50}}{2\times \frac{9}{100}}
Take the square root of \frac{198819}{2500}.
x=\frac{-9±\frac{3\sqrt{22091}}{50}}{\frac{9}{50}}
Multiply 2 times \frac{9}{100}.
x=\frac{\frac{3\sqrt{22091}}{50}-9}{\frac{9}{50}}
Now solve the equation x=\frac{-9±\frac{3\sqrt{22091}}{50}}{\frac{9}{50}} when ± is plus. Add -9 to \frac{3\sqrt{22091}}{50}.
x=\frac{\sqrt{22091}}{3}-50
Divide -9+\frac{3\sqrt{22091}}{50} by \frac{9}{50} by multiplying -9+\frac{3\sqrt{22091}}{50} by the reciprocal of \frac{9}{50}.
x=\frac{-\frac{3\sqrt{22091}}{50}-9}{\frac{9}{50}}
Now solve the equation x=\frac{-9±\frac{3\sqrt{22091}}{50}}{\frac{9}{50}} when ± is minus. Subtract \frac{3\sqrt{22091}}{50} from -9.
x=-\frac{\sqrt{22091}}{3}-50
Divide -9-\frac{3\sqrt{22091}}{50} by \frac{9}{50} by multiplying -9-\frac{3\sqrt{22091}}{50} by the reciprocal of \frac{9}{50}.
x=\frac{\sqrt{22091}}{3}-50 x=-\frac{\sqrt{22091}}{3}-50
The equation is now solved.
\frac{9}{100}+\frac{9}{100}x^{2}+\sqrt{4+4+6+2}+9x=0
Multiply \frac{1}{100} and 9 to get \frac{9}{100}.
\frac{9}{100}+\frac{9}{100}x^{2}+\sqrt{8+6+2}+9x=0
Add 4 and 4 to get 8.
\frac{9}{100}+\frac{9}{100}x^{2}+\sqrt{14+2}+9x=0
Add 8 and 6 to get 14.
\frac{9}{100}+\frac{9}{100}x^{2}+\sqrt{16}+9x=0
Add 14 and 2 to get 16.
\frac{9}{100}+\frac{9}{100}x^{2}+4+9x=0
Calculate the square root of 16 and get 4.
\frac{409}{100}+\frac{9}{100}x^{2}+9x=0
Add \frac{9}{100} and 4 to get \frac{409}{100}.
\frac{9}{100}x^{2}+9x=-\frac{409}{100}
Subtract \frac{409}{100} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{9}{100}x^{2}+9x}{\frac{9}{100}}=-\frac{\frac{409}{100}}{\frac{9}{100}}
Divide both sides of the equation by \frac{9}{100}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{9}{\frac{9}{100}}x=-\frac{\frac{409}{100}}{\frac{9}{100}}
Dividing by \frac{9}{100} undoes the multiplication by \frac{9}{100}.
x^{2}+100x=-\frac{\frac{409}{100}}{\frac{9}{100}}
Divide 9 by \frac{9}{100} by multiplying 9 by the reciprocal of \frac{9}{100}.
x^{2}+100x=-\frac{409}{9}
Divide -\frac{409}{100} by \frac{9}{100} by multiplying -\frac{409}{100} by the reciprocal of \frac{9}{100}.
x^{2}+100x+50^{2}=-\frac{409}{9}+50^{2}
Divide 100, the coefficient of the x term, by 2 to get 50. Then add the square of 50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+100x+2500=-\frac{409}{9}+2500
Square 50.
x^{2}+100x+2500=\frac{22091}{9}
Add -\frac{409}{9} to 2500.
\left(x+50\right)^{2}=\frac{22091}{9}
Factor x^{2}+100x+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+50\right)^{2}}=\sqrt{\frac{22091}{9}}
Take the square root of both sides of the equation.
x+50=\frac{\sqrt{22091}}{3} x+50=-\frac{\sqrt{22091}}{3}
Simplify.
x=\frac{\sqrt{22091}}{3}-50 x=-\frac{\sqrt{22091}}{3}-50
Subtract 50 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}