9 : \frac { 13 } { 20 } - \frac { 3 } { 4 } \cdot 5 - 1,3 =
Evaluate
\frac{2287}{260}\approx 8,796153846
Factor
\frac{2287}{5 \cdot 13 \cdot 2 ^ {2}} = 8\frac{207}{260} = 8.796153846153846
Share
Copied to clipboard
9\times \frac{20}{13}-\frac{3}{4}\times 5-1,3
Divide 9 by \frac{13}{20} by multiplying 9 by the reciprocal of \frac{13}{20}.
\frac{9\times 20}{13}-\frac{3}{4}\times 5-1,3
Express 9\times \frac{20}{13} as a single fraction.
\frac{180}{13}-\frac{3}{4}\times 5-1,3
Multiply 9 and 20 to get 180.
\frac{180}{13}-\frac{3\times 5}{4}-1,3
Express \frac{3}{4}\times 5 as a single fraction.
\frac{180}{13}-\frac{15}{4}-1,3
Multiply 3 and 5 to get 15.
\frac{720}{52}-\frac{195}{52}-1,3
Least common multiple of 13 and 4 is 52. Convert \frac{180}{13} and \frac{15}{4} to fractions with denominator 52.
\frac{720-195}{52}-1,3
Since \frac{720}{52} and \frac{195}{52} have the same denominator, subtract them by subtracting their numerators.
\frac{525}{52}-1,3
Subtract 195 from 720 to get 525.
\frac{525}{52}-\frac{13}{10}
Convert decimal number 1,3 to fraction \frac{13}{10}.
\frac{2625}{260}-\frac{338}{260}
Least common multiple of 52 and 10 is 260. Convert \frac{525}{52} and \frac{13}{10} to fractions with denominator 260.
\frac{2625-338}{260}
Since \frac{2625}{260} and \frac{338}{260} have the same denominator, subtract them by subtracting their numerators.
\frac{2287}{260}
Subtract 338 from 2625 to get 2287.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}