Solve for x
x = \frac{2 \sqrt{7} - 2}{3} \approx 1.097167541
x=\frac{-2\sqrt{7}-2}{3}\approx -2.430500874
Graph
Share
Copied to clipboard
9+x^{2}=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
9+x^{2}-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
9-3x^{2}=4x+1
Combine x^{2} and -4x^{2} to get -3x^{2}.
9-3x^{2}-4x=1
Subtract 4x from both sides.
9-3x^{2}-4x-1=0
Subtract 1 from both sides.
8-3x^{2}-4x=0
Subtract 1 from 9 to get 8.
-3x^{2}-4x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -4 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\times 8}}{2\left(-3\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+12\times 8}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-4\right)±\sqrt{16+96}}{2\left(-3\right)}
Multiply 12 times 8.
x=\frac{-\left(-4\right)±\sqrt{112}}{2\left(-3\right)}
Add 16 to 96.
x=\frac{-\left(-4\right)±4\sqrt{7}}{2\left(-3\right)}
Take the square root of 112.
x=\frac{4±4\sqrt{7}}{2\left(-3\right)}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{7}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{7}+4}{-6}
Now solve the equation x=\frac{4±4\sqrt{7}}{-6} when ± is plus. Add 4 to 4\sqrt{7}.
x=\frac{-2\sqrt{7}-2}{3}
Divide 4+4\sqrt{7} by -6.
x=\frac{4-4\sqrt{7}}{-6}
Now solve the equation x=\frac{4±4\sqrt{7}}{-6} when ± is minus. Subtract 4\sqrt{7} from 4.
x=\frac{2\sqrt{7}-2}{3}
Divide 4-4\sqrt{7} by -6.
x=\frac{-2\sqrt{7}-2}{3} x=\frac{2\sqrt{7}-2}{3}
The equation is now solved.
9+x^{2}=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
9+x^{2}-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
9-3x^{2}=4x+1
Combine x^{2} and -4x^{2} to get -3x^{2}.
9-3x^{2}-4x=1
Subtract 4x from both sides.
-3x^{2}-4x=1-9
Subtract 9 from both sides.
-3x^{2}-4x=-8
Subtract 9 from 1 to get -8.
\frac{-3x^{2}-4x}{-3}=-\frac{8}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{4}{-3}\right)x=-\frac{8}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{4}{3}x=-\frac{8}{-3}
Divide -4 by -3.
x^{2}+\frac{4}{3}x=\frac{8}{3}
Divide -8 by -3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{8}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{8}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{28}{9}
Add \frac{8}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=\frac{28}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{28}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{2\sqrt{7}}{3} x+\frac{2}{3}=-\frac{2\sqrt{7}}{3}
Simplify.
x=\frac{2\sqrt{7}-2}{3} x=\frac{-2\sqrt{7}-2}{3}
Subtract \frac{2}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}