Solve for x
x=\sqrt{5}+\frac{3}{2}\approx 3.736067977
x=\frac{3}{2}-\sqrt{5}\approx -0.736067977
Graph
Share
Copied to clipboard
8x+12-4x^{2}=-4x+1
Subtract 4x^{2} from both sides.
8x+12-4x^{2}+4x=1
Add 4x to both sides.
12x+12-4x^{2}=1
Combine 8x and 4x to get 12x.
12x+12-4x^{2}-1=0
Subtract 1 from both sides.
12x+11-4x^{2}=0
Subtract 1 from 12 to get 11.
-4x^{2}+12x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-4\right)\times 11}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 12 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-4\right)\times 11}}{2\left(-4\right)}
Square 12.
x=\frac{-12±\sqrt{144+16\times 11}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-12±\sqrt{144+176}}{2\left(-4\right)}
Multiply 16 times 11.
x=\frac{-12±\sqrt{320}}{2\left(-4\right)}
Add 144 to 176.
x=\frac{-12±8\sqrt{5}}{2\left(-4\right)}
Take the square root of 320.
x=\frac{-12±8\sqrt{5}}{-8}
Multiply 2 times -4.
x=\frac{8\sqrt{5}-12}{-8}
Now solve the equation x=\frac{-12±8\sqrt{5}}{-8} when ± is plus. Add -12 to 8\sqrt{5}.
x=\frac{3}{2}-\sqrt{5}
Divide -12+8\sqrt{5} by -8.
x=\frac{-8\sqrt{5}-12}{-8}
Now solve the equation x=\frac{-12±8\sqrt{5}}{-8} when ± is minus. Subtract 8\sqrt{5} from -12.
x=\sqrt{5}+\frac{3}{2}
Divide -12-8\sqrt{5} by -8.
x=\frac{3}{2}-\sqrt{5} x=\sqrt{5}+\frac{3}{2}
The equation is now solved.
8x+12-4x^{2}=-4x+1
Subtract 4x^{2} from both sides.
8x+12-4x^{2}+4x=1
Add 4x to both sides.
12x+12-4x^{2}=1
Combine 8x and 4x to get 12x.
12x-4x^{2}=1-12
Subtract 12 from both sides.
12x-4x^{2}=-11
Subtract 12 from 1 to get -11.
-4x^{2}+12x=-11
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+12x}{-4}=-\frac{11}{-4}
Divide both sides by -4.
x^{2}+\frac{12}{-4}x=-\frac{11}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-3x=-\frac{11}{-4}
Divide 12 by -4.
x^{2}-3x=\frac{11}{4}
Divide -11 by -4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{11}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{11+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=5
Add \frac{11}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=5
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\sqrt{5} x-\frac{3}{2}=-\sqrt{5}
Simplify.
x=\sqrt{5}+\frac{3}{2} x=\frac{3}{2}-\sqrt{5}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}