Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}\times 9=46
Multiply x and x to get x^{2}.
72x^{2}=46
Multiply 8 and 9 to get 72.
x^{2}=\frac{46}{72}
Divide both sides by 72.
x^{2}=\frac{23}{36}
Reduce the fraction \frac{46}{72} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{23}}{6} x=-\frac{\sqrt{23}}{6}
Take the square root of both sides of the equation.
8x^{2}\times 9=46
Multiply x and x to get x^{2}.
72x^{2}=46
Multiply 8 and 9 to get 72.
72x^{2}-46=0
Subtract 46 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 72\left(-46\right)}}{2\times 72}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 72 for a, 0 for b, and -46 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 72\left(-46\right)}}{2\times 72}
Square 0.
x=\frac{0±\sqrt{-288\left(-46\right)}}{2\times 72}
Multiply -4 times 72.
x=\frac{0±\sqrt{13248}}{2\times 72}
Multiply -288 times -46.
x=\frac{0±24\sqrt{23}}{2\times 72}
Take the square root of 13248.
x=\frac{0±24\sqrt{23}}{144}
Multiply 2 times 72.
x=\frac{\sqrt{23}}{6}
Now solve the equation x=\frac{0±24\sqrt{23}}{144} when ± is plus.
x=-\frac{\sqrt{23}}{6}
Now solve the equation x=\frac{0±24\sqrt{23}}{144} when ± is minus.
x=\frac{\sqrt{23}}{6} x=-\frac{\sqrt{23}}{6}
The equation is now solved.