Evaluate
29
Factor
29
Share
Copied to clipboard
\begin{array}{l}\phantom{31)}\phantom{1}\\31\overline{)899}\\\end{array}
Use the 1^{st} digit 8 from dividend 899
\begin{array}{l}\phantom{31)}0\phantom{2}\\31\overline{)899}\\\end{array}
Since 8 is less than 31, use the next digit 9 from dividend 899 and add 0 to the quotient
\begin{array}{l}\phantom{31)}0\phantom{3}\\31\overline{)899}\\\end{array}
Use the 2^{nd} digit 9 from dividend 899
\begin{array}{l}\phantom{31)}02\phantom{4}\\31\overline{)899}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)}27\\\end{array}
Find closest multiple of 31 to 89. We see that 2 \times 31 = 62 is the nearest. Now subtract 62 from 89 to get reminder 27. Add 2 to quotient.
\begin{array}{l}\phantom{31)}02\phantom{5}\\31\overline{)899}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)}279\\\end{array}
Use the 3^{rd} digit 9 from dividend 899
\begin{array}{l}\phantom{31)}029\phantom{6}\\31\overline{)899}\\\phantom{31)}\underline{\phantom{}62\phantom{9}}\\\phantom{31)}279\\\phantom{31)}\underline{\phantom{}279\phantom{}}\\\phantom{31)999}0\\\end{array}
Find closest multiple of 31 to 279. We see that 9 \times 31 = 279 is the nearest. Now subtract 279 from 279 to get reminder 0. Add 9 to quotient.
\text{Quotient: }29 \text{Reminder: }0
Since 0 is less than 31, stop the division. The reminder is 0. The topmost line 029 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}