Evaluate
\frac{899}{19}\approx 47.315789474
Factor
\frac{29 \cdot 31}{19} = 47\frac{6}{19} = 47.31578947368421
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)899}\\\end{array}
Use the 1^{st} digit 8 from dividend 899
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)899}\\\end{array}
Since 8 is less than 19, use the next digit 9 from dividend 899 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)899}\\\end{array}
Use the 2^{nd} digit 9 from dividend 899
\begin{array}{l}\phantom{19)}04\phantom{4}\\19\overline{)899}\\\phantom{19)}\underline{\phantom{}76\phantom{9}}\\\phantom{19)}13\\\end{array}
Find closest multiple of 19 to 89. We see that 4 \times 19 = 76 is the nearest. Now subtract 76 from 89 to get reminder 13. Add 4 to quotient.
\begin{array}{l}\phantom{19)}04\phantom{5}\\19\overline{)899}\\\phantom{19)}\underline{\phantom{}76\phantom{9}}\\\phantom{19)}139\\\end{array}
Use the 3^{rd} digit 9 from dividend 899
\begin{array}{l}\phantom{19)}047\phantom{6}\\19\overline{)899}\\\phantom{19)}\underline{\phantom{}76\phantom{9}}\\\phantom{19)}139\\\phantom{19)}\underline{\phantom{}133\phantom{}}\\\phantom{19)99}6\\\end{array}
Find closest multiple of 19 to 139. We see that 7 \times 19 = 133 is the nearest. Now subtract 133 from 139 to get reminder 6. Add 7 to quotient.
\text{Quotient: }47 \text{Reminder: }6
Since 6 is less than 19, stop the division. The reminder is 6. The topmost line 047 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 47.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}