Evaluate
\frac{895}{56}\approx 15.982142857
Factor
\frac{5 \cdot 179}{2 ^ {3} \cdot 7} = 15\frac{55}{56} = 15.982142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{56)}\phantom{1}\\56\overline{)895}\\\end{array}
Use the 1^{st} digit 8 from dividend 895
\begin{array}{l}\phantom{56)}0\phantom{2}\\56\overline{)895}\\\end{array}
Since 8 is less than 56, use the next digit 9 from dividend 895 and add 0 to the quotient
\begin{array}{l}\phantom{56)}0\phantom{3}\\56\overline{)895}\\\end{array}
Use the 2^{nd} digit 9 from dividend 895
\begin{array}{l}\phantom{56)}01\phantom{4}\\56\overline{)895}\\\phantom{56)}\underline{\phantom{}56\phantom{9}}\\\phantom{56)}33\\\end{array}
Find closest multiple of 56 to 89. We see that 1 \times 56 = 56 is the nearest. Now subtract 56 from 89 to get reminder 33. Add 1 to quotient.
\begin{array}{l}\phantom{56)}01\phantom{5}\\56\overline{)895}\\\phantom{56)}\underline{\phantom{}56\phantom{9}}\\\phantom{56)}335\\\end{array}
Use the 3^{rd} digit 5 from dividend 895
\begin{array}{l}\phantom{56)}015\phantom{6}\\56\overline{)895}\\\phantom{56)}\underline{\phantom{}56\phantom{9}}\\\phantom{56)}335\\\phantom{56)}\underline{\phantom{}280\phantom{}}\\\phantom{56)9}55\\\end{array}
Find closest multiple of 56 to 335. We see that 5 \times 56 = 280 is the nearest. Now subtract 280 from 335 to get reminder 55. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }55
Since 55 is less than 56, stop the division. The reminder is 55. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}