Evaluate
\frac{447}{38}\approx 11.763157895
Factor
\frac{3 \cdot 149}{2 \cdot 19} = 11\frac{29}{38} = 11.763157894736842
Share
Copied to clipboard
\begin{array}{l}\phantom{76)}\phantom{1}\\76\overline{)894}\\\end{array}
Use the 1^{st} digit 8 from dividend 894
\begin{array}{l}\phantom{76)}0\phantom{2}\\76\overline{)894}\\\end{array}
Since 8 is less than 76, use the next digit 9 from dividend 894 and add 0 to the quotient
\begin{array}{l}\phantom{76)}0\phantom{3}\\76\overline{)894}\\\end{array}
Use the 2^{nd} digit 9 from dividend 894
\begin{array}{l}\phantom{76)}01\phantom{4}\\76\overline{)894}\\\phantom{76)}\underline{\phantom{}76\phantom{9}}\\\phantom{76)}13\\\end{array}
Find closest multiple of 76 to 89. We see that 1 \times 76 = 76 is the nearest. Now subtract 76 from 89 to get reminder 13. Add 1 to quotient.
\begin{array}{l}\phantom{76)}01\phantom{5}\\76\overline{)894}\\\phantom{76)}\underline{\phantom{}76\phantom{9}}\\\phantom{76)}134\\\end{array}
Use the 3^{rd} digit 4 from dividend 894
\begin{array}{l}\phantom{76)}011\phantom{6}\\76\overline{)894}\\\phantom{76)}\underline{\phantom{}76\phantom{9}}\\\phantom{76)}134\\\phantom{76)}\underline{\phantom{9}76\phantom{}}\\\phantom{76)9}58\\\end{array}
Find closest multiple of 76 to 134. We see that 1 \times 76 = 76 is the nearest. Now subtract 76 from 134 to get reminder 58. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }58
Since 58 is less than 76, stop the division. The reminder is 58. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}