Evaluate
\frac{89}{24}\approx 3.708333333
Factor
\frac{89}{2 ^ {3} \cdot 3} = 3\frac{17}{24} = 3.7083333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)89}\\\end{array}
Use the 1^{st} digit 8 from dividend 89
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)89}\\\end{array}
Since 8 is less than 24, use the next digit 9 from dividend 89 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)89}\\\end{array}
Use the 2^{nd} digit 9 from dividend 89
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)89}\\\phantom{24)}\underline{\phantom{}72\phantom{}}\\\phantom{24)}17\\\end{array}
Find closest multiple of 24 to 89. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 89 to get reminder 17. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }17
Since 17 is less than 24, stop the division. The reminder is 17. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}