Evaluate
\frac{148}{19}\approx 7.789473684
Factor
\frac{2 ^ {2} \cdot 37}{19} = 7\frac{15}{19} = 7.7894736842105265
Share
Copied to clipboard
\begin{array}{l}\phantom{114)}\phantom{1}\\114\overline{)888}\\\end{array}
Use the 1^{st} digit 8 from dividend 888
\begin{array}{l}\phantom{114)}0\phantom{2}\\114\overline{)888}\\\end{array}
Since 8 is less than 114, use the next digit 8 from dividend 888 and add 0 to the quotient
\begin{array}{l}\phantom{114)}0\phantom{3}\\114\overline{)888}\\\end{array}
Use the 2^{nd} digit 8 from dividend 888
\begin{array}{l}\phantom{114)}00\phantom{4}\\114\overline{)888}\\\end{array}
Since 88 is less than 114, use the next digit 8 from dividend 888 and add 0 to the quotient
\begin{array}{l}\phantom{114)}00\phantom{5}\\114\overline{)888}\\\end{array}
Use the 3^{rd} digit 8 from dividend 888
\begin{array}{l}\phantom{114)}007\phantom{6}\\114\overline{)888}\\\phantom{114)}\underline{\phantom{}798\phantom{}}\\\phantom{114)9}90\\\end{array}
Find closest multiple of 114 to 888. We see that 7 \times 114 = 798 is the nearest. Now subtract 798 from 888 to get reminder 90. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }90
Since 90 is less than 114, stop the division. The reminder is 90. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}