Evaluate
\frac{888}{199}\approx 4.462311558
Factor
\frac{2 ^ {3} \cdot 3 \cdot 37}{199} = 4\frac{92}{199} = 4.4623115577889445
Share
Copied to clipboard
\begin{array}{l}\phantom{199)}\phantom{1}\\199\overline{)888}\\\end{array}
Use the 1^{st} digit 8 from dividend 888
\begin{array}{l}\phantom{199)}0\phantom{2}\\199\overline{)888}\\\end{array}
Since 8 is less than 199, use the next digit 8 from dividend 888 and add 0 to the quotient
\begin{array}{l}\phantom{199)}0\phantom{3}\\199\overline{)888}\\\end{array}
Use the 2^{nd} digit 8 from dividend 888
\begin{array}{l}\phantom{199)}00\phantom{4}\\199\overline{)888}\\\end{array}
Since 88 is less than 199, use the next digit 8 from dividend 888 and add 0 to the quotient
\begin{array}{l}\phantom{199)}00\phantom{5}\\199\overline{)888}\\\end{array}
Use the 3^{rd} digit 8 from dividend 888
\begin{array}{l}\phantom{199)}004\phantom{6}\\199\overline{)888}\\\phantom{199)}\underline{\phantom{}796\phantom{}}\\\phantom{199)9}92\\\end{array}
Find closest multiple of 199 to 888. We see that 4 \times 199 = 796 is the nearest. Now subtract 796 from 888 to get reminder 92. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }92
Since 92 is less than 199, stop the division. The reminder is 92. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}