Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{222)}\phantom{1}\\222\overline{)888}\\\end{array}
Use the 1^{st} digit 8 from dividend 888
\begin{array}{l}\phantom{222)}0\phantom{2}\\222\overline{)888}\\\end{array}
Since 8 is less than 222, use the next digit 8 from dividend 888 and add 0 to the quotient
\begin{array}{l}\phantom{222)}0\phantom{3}\\222\overline{)888}\\\end{array}
Use the 2^{nd} digit 8 from dividend 888
\begin{array}{l}\phantom{222)}00\phantom{4}\\222\overline{)888}\\\end{array}
Since 88 is less than 222, use the next digit 8 from dividend 888 and add 0 to the quotient
\begin{array}{l}\phantom{222)}00\phantom{5}\\222\overline{)888}\\\end{array}
Use the 3^{rd} digit 8 from dividend 888
\begin{array}{l}\phantom{222)}004\phantom{6}\\222\overline{)888}\\\phantom{222)}\underline{\phantom{}888\phantom{}}\\\phantom{222)999}0\\\end{array}
Find closest multiple of 222 to 888. We see that 4 \times 222 = 888 is the nearest. Now subtract 888 from 888 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 222, stop the division. The reminder is 0. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}