Evaluate
\frac{88711}{222}\approx 399.599099099
Factor
\frac{7 \cdot 19 \cdot 23 \cdot 29}{2 \cdot 3 \cdot 37} = 399\frac{133}{222} = 399.5990990990991
Share
Copied to clipboard
\begin{array}{l}\phantom{222)}\phantom{1}\\222\overline{)88711}\\\end{array}
Use the 1^{st} digit 8 from dividend 88711
\begin{array}{l}\phantom{222)}0\phantom{2}\\222\overline{)88711}\\\end{array}
Since 8 is less than 222, use the next digit 8 from dividend 88711 and add 0 to the quotient
\begin{array}{l}\phantom{222)}0\phantom{3}\\222\overline{)88711}\\\end{array}
Use the 2^{nd} digit 8 from dividend 88711
\begin{array}{l}\phantom{222)}00\phantom{4}\\222\overline{)88711}\\\end{array}
Since 88 is less than 222, use the next digit 7 from dividend 88711 and add 0 to the quotient
\begin{array}{l}\phantom{222)}00\phantom{5}\\222\overline{)88711}\\\end{array}
Use the 3^{rd} digit 7 from dividend 88711
\begin{array}{l}\phantom{222)}003\phantom{6}\\222\overline{)88711}\\\phantom{222)}\underline{\phantom{}666\phantom{99}}\\\phantom{222)}221\\\end{array}
Find closest multiple of 222 to 887. We see that 3 \times 222 = 666 is the nearest. Now subtract 666 from 887 to get reminder 221. Add 3 to quotient.
\begin{array}{l}\phantom{222)}003\phantom{7}\\222\overline{)88711}\\\phantom{222)}\underline{\phantom{}666\phantom{99}}\\\phantom{222)}2211\\\end{array}
Use the 4^{th} digit 1 from dividend 88711
\begin{array}{l}\phantom{222)}0039\phantom{8}\\222\overline{)88711}\\\phantom{222)}\underline{\phantom{}666\phantom{99}}\\\phantom{222)}2211\\\phantom{222)}\underline{\phantom{}1998\phantom{9}}\\\phantom{222)9}213\\\end{array}
Find closest multiple of 222 to 2211. We see that 9 \times 222 = 1998 is the nearest. Now subtract 1998 from 2211 to get reminder 213. Add 9 to quotient.
\begin{array}{l}\phantom{222)}0039\phantom{9}\\222\overline{)88711}\\\phantom{222)}\underline{\phantom{}666\phantom{99}}\\\phantom{222)}2211\\\phantom{222)}\underline{\phantom{}1998\phantom{9}}\\\phantom{222)9}2131\\\end{array}
Use the 5^{th} digit 1 from dividend 88711
\begin{array}{l}\phantom{222)}00399\phantom{10}\\222\overline{)88711}\\\phantom{222)}\underline{\phantom{}666\phantom{99}}\\\phantom{222)}2211\\\phantom{222)}\underline{\phantom{}1998\phantom{9}}\\\phantom{222)9}2131\\\phantom{222)}\underline{\phantom{9}1998\phantom{}}\\\phantom{222)99}133\\\end{array}
Find closest multiple of 222 to 2131. We see that 9 \times 222 = 1998 is the nearest. Now subtract 1998 from 2131 to get reminder 133. Add 9 to quotient.
\text{Quotient: }399 \text{Reminder: }133
Since 133 is less than 222, stop the division. The reminder is 133. The topmost line 00399 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 399.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}