Evaluate
\frac{886}{33}\approx 26.848484848
Factor
\frac{2 \cdot 443}{3 \cdot 11} = 26\frac{28}{33} = 26.848484848484848
Share
Copied to clipboard
\begin{array}{l}\phantom{33)}\phantom{1}\\33\overline{)886}\\\end{array}
Use the 1^{st} digit 8 from dividend 886
\begin{array}{l}\phantom{33)}0\phantom{2}\\33\overline{)886}\\\end{array}
Since 8 is less than 33, use the next digit 8 from dividend 886 and add 0 to the quotient
\begin{array}{l}\phantom{33)}0\phantom{3}\\33\overline{)886}\\\end{array}
Use the 2^{nd} digit 8 from dividend 886
\begin{array}{l}\phantom{33)}02\phantom{4}\\33\overline{)886}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}22\\\end{array}
Find closest multiple of 33 to 88. We see that 2 \times 33 = 66 is the nearest. Now subtract 66 from 88 to get reminder 22. Add 2 to quotient.
\begin{array}{l}\phantom{33)}02\phantom{5}\\33\overline{)886}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}226\\\end{array}
Use the 3^{rd} digit 6 from dividend 886
\begin{array}{l}\phantom{33)}026\phantom{6}\\33\overline{)886}\\\phantom{33)}\underline{\phantom{}66\phantom{9}}\\\phantom{33)}226\\\phantom{33)}\underline{\phantom{}198\phantom{}}\\\phantom{33)9}28\\\end{array}
Find closest multiple of 33 to 226. We see that 6 \times 33 = 198 is the nearest. Now subtract 198 from 226 to get reminder 28. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }28
Since 28 is less than 33, stop the division. The reminder is 28. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}