Evaluate
68
Factor
2^{2}\times 17
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)884}\\\end{array}
Use the 1^{st} digit 8 from dividend 884
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)884}\\\end{array}
Since 8 is less than 13, use the next digit 8 from dividend 884 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)884}\\\end{array}
Use the 2^{nd} digit 8 from dividend 884
\begin{array}{l}\phantom{13)}06\phantom{4}\\13\overline{)884}\\\phantom{13)}\underline{\phantom{}78\phantom{9}}\\\phantom{13)}10\\\end{array}
Find closest multiple of 13 to 88. We see that 6 \times 13 = 78 is the nearest. Now subtract 78 from 88 to get reminder 10. Add 6 to quotient.
\begin{array}{l}\phantom{13)}06\phantom{5}\\13\overline{)884}\\\phantom{13)}\underline{\phantom{}78\phantom{9}}\\\phantom{13)}104\\\end{array}
Use the 3^{rd} digit 4 from dividend 884
\begin{array}{l}\phantom{13)}068\phantom{6}\\13\overline{)884}\\\phantom{13)}\underline{\phantom{}78\phantom{9}}\\\phantom{13)}104\\\phantom{13)}\underline{\phantom{}104\phantom{}}\\\phantom{13)999}0\\\end{array}
Find closest multiple of 13 to 104. We see that 8 \times 13 = 104 is the nearest. Now subtract 104 from 104 to get reminder 0. Add 8 to quotient.
\text{Quotient: }68 \text{Reminder: }0
Since 0 is less than 13, stop the division. The reminder is 0. The topmost line 068 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 68.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}