Evaluate
\frac{8}{5}=1.6
Factor
\frac{2 ^ {3}}{5} = 1\frac{3}{5} = 1.6
Share
Copied to clipboard
\begin{array}{l}\phantom{55)}\phantom{1}\\55\overline{)88}\\\end{array}
Use the 1^{st} digit 8 from dividend 88
\begin{array}{l}\phantom{55)}0\phantom{2}\\55\overline{)88}\\\end{array}
Since 8 is less than 55, use the next digit 8 from dividend 88 and add 0 to the quotient
\begin{array}{l}\phantom{55)}0\phantom{3}\\55\overline{)88}\\\end{array}
Use the 2^{nd} digit 8 from dividend 88
\begin{array}{l}\phantom{55)}01\phantom{4}\\55\overline{)88}\\\phantom{55)}\underline{\phantom{}55\phantom{}}\\\phantom{55)}33\\\end{array}
Find closest multiple of 55 to 88. We see that 1 \times 55 = 55 is the nearest. Now subtract 55 from 88 to get reminder 33. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }33
Since 33 is less than 55, stop the division. The reminder is 33. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}