Evaluate
\frac{1743}{17}\approx 102.529411765
Factor
\frac{3 \cdot 7 \cdot 83}{17} = 102\frac{9}{17} = 102.52941176470588
Share
Copied to clipboard
\begin{array}{l}\phantom{85)}\phantom{1}\\85\overline{)8715}\\\end{array}
Use the 1^{st} digit 8 from dividend 8715
\begin{array}{l}\phantom{85)}0\phantom{2}\\85\overline{)8715}\\\end{array}
Since 8 is less than 85, use the next digit 7 from dividend 8715 and add 0 to the quotient
\begin{array}{l}\phantom{85)}0\phantom{3}\\85\overline{)8715}\\\end{array}
Use the 2^{nd} digit 7 from dividend 8715
\begin{array}{l}\phantom{85)}01\phantom{4}\\85\overline{)8715}\\\phantom{85)}\underline{\phantom{}85\phantom{99}}\\\phantom{85)9}2\\\end{array}
Find closest multiple of 85 to 87. We see that 1 \times 85 = 85 is the nearest. Now subtract 85 from 87 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{85)}01\phantom{5}\\85\overline{)8715}\\\phantom{85)}\underline{\phantom{}85\phantom{99}}\\\phantom{85)9}21\\\end{array}
Use the 3^{rd} digit 1 from dividend 8715
\begin{array}{l}\phantom{85)}010\phantom{6}\\85\overline{)8715}\\\phantom{85)}\underline{\phantom{}85\phantom{99}}\\\phantom{85)9}21\\\end{array}
Since 21 is less than 85, use the next digit 5 from dividend 8715 and add 0 to the quotient
\begin{array}{l}\phantom{85)}010\phantom{7}\\85\overline{)8715}\\\phantom{85)}\underline{\phantom{}85\phantom{99}}\\\phantom{85)9}215\\\end{array}
Use the 4^{th} digit 5 from dividend 8715
\begin{array}{l}\phantom{85)}0102\phantom{8}\\85\overline{)8715}\\\phantom{85)}\underline{\phantom{}85\phantom{99}}\\\phantom{85)9}215\\\phantom{85)}\underline{\phantom{9}170\phantom{}}\\\phantom{85)99}45\\\end{array}
Find closest multiple of 85 to 215. We see that 2 \times 85 = 170 is the nearest. Now subtract 170 from 215 to get reminder 45. Add 2 to quotient.
\text{Quotient: }102 \text{Reminder: }45
Since 45 is less than 85, stop the division. The reminder is 45. The topmost line 0102 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 102.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}