Solve for y
y=\frac{-4984+i\times 25\sqrt{8093}}{4359}\approx -1.14338151+0.515950348i
y=\frac{-i\times 25\sqrt{8093}-4984}{4359}\approx -1.14338151-0.515950348i
Share
Copied to clipboard
87.564\left(y+1\right)^{2}=5+\left(y+1\right)\times 5+\left(y+1\right)^{2}\times 105
Variable y cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(y+1\right)^{2}, the least common multiple of \left(1+y\right)^{2},1+y.
87.564\left(y^{2}+2y+1\right)=5+\left(y+1\right)\times 5+\left(y+1\right)^{2}\times 105
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
87.564y^{2}+175.128y+87.564=5+\left(y+1\right)\times 5+\left(y+1\right)^{2}\times 105
Use the distributive property to multiply 87.564 by y^{2}+2y+1.
87.564y^{2}+175.128y+87.564=5+5y+5+\left(y+1\right)^{2}\times 105
Use the distributive property to multiply y+1 by 5.
87.564y^{2}+175.128y+87.564=10+5y+\left(y+1\right)^{2}\times 105
Add 5 and 5 to get 10.
87.564y^{2}+175.128y+87.564=10+5y+\left(y^{2}+2y+1\right)\times 105
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
87.564y^{2}+175.128y+87.564=10+5y+105y^{2}+210y+105
Use the distributive property to multiply y^{2}+2y+1 by 105.
87.564y^{2}+175.128y+87.564=10+215y+105y^{2}+105
Combine 5y and 210y to get 215y.
87.564y^{2}+175.128y+87.564=115+215y+105y^{2}
Add 10 and 105 to get 115.
87.564y^{2}+175.128y+87.564-115=215y+105y^{2}
Subtract 115 from both sides.
87.564y^{2}+175.128y-27.436=215y+105y^{2}
Subtract 115 from 87.564 to get -27.436.
87.564y^{2}+175.128y-27.436-215y=105y^{2}
Subtract 215y from both sides.
87.564y^{2}-39.872y-27.436=105y^{2}
Combine 175.128y and -215y to get -39.872y.
87.564y^{2}-39.872y-27.436-105y^{2}=0
Subtract 105y^{2} from both sides.
-17.436y^{2}-39.872y-27.436=0
Combine 87.564y^{2} and -105y^{2} to get -17.436y^{2}.
-\frac{4359}{250}y^{2}-39.872y-27.436=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-39.872\right)±\sqrt{\left(-39.872\right)^{2}-4\left(-\frac{4359}{250}\right)\left(-27.436\right)}}{2\left(-\frac{4359}{250}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{4359}{250} for a, -39.872 for b, and -27.436 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-39.872\right)±\sqrt{1589.776384-4\left(-\frac{4359}{250}\right)\left(-27.436\right)}}{2\left(-\frac{4359}{250}\right)}
Square -39.872 by squaring both the numerator and the denominator of the fraction.
y=\frac{-\left(-39.872\right)±\sqrt{1589.776384+\frac{8718}{125}\left(-27.436\right)}}{2\left(-\frac{4359}{250}\right)}
Multiply -4 times -\frac{4359}{250}.
y=\frac{-\left(-39.872\right)±\sqrt{\frac{24840256-29898381}{15625}}}{2\left(-\frac{4359}{250}\right)}
Multiply \frac{8718}{125} times -27.436 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-39.872\right)±\sqrt{-\frac{8093}{25}}}{2\left(-\frac{4359}{250}\right)}
Add 1589.776384 to -\frac{29898381}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-39.872\right)±\frac{\sqrt{8093}i}{5}}{2\left(-\frac{4359}{250}\right)}
Take the square root of -\frac{8093}{25}.
y=\frac{39.872±\frac{\sqrt{8093}i}{5}}{2\left(-\frac{4359}{250}\right)}
The opposite of -39.872 is 39.872.
y=\frac{39.872±\frac{\sqrt{8093}i}{5}}{-\frac{4359}{125}}
Multiply 2 times -\frac{4359}{250}.
y=\frac{\frac{\sqrt{8093}i}{5}+\frac{4984}{125}}{-\frac{4359}{125}}
Now solve the equation y=\frac{39.872±\frac{\sqrt{8093}i}{5}}{-\frac{4359}{125}} when ± is plus. Add 39.872 to \frac{i\sqrt{8093}}{5}.
y=\frac{-25\sqrt{8093}i-4984}{4359}
Divide \frac{4984}{125}+\frac{i\sqrt{8093}}{5} by -\frac{4359}{125} by multiplying \frac{4984}{125}+\frac{i\sqrt{8093}}{5} by the reciprocal of -\frac{4359}{125}.
y=\frac{-\frac{\sqrt{8093}i}{5}+\frac{4984}{125}}{-\frac{4359}{125}}
Now solve the equation y=\frac{39.872±\frac{\sqrt{8093}i}{5}}{-\frac{4359}{125}} when ± is minus. Subtract \frac{i\sqrt{8093}}{5} from 39.872.
y=\frac{-4984+25\sqrt{8093}i}{4359}
Divide \frac{4984}{125}-\frac{i\sqrt{8093}}{5} by -\frac{4359}{125} by multiplying \frac{4984}{125}-\frac{i\sqrt{8093}}{5} by the reciprocal of -\frac{4359}{125}.
y=\frac{-25\sqrt{8093}i-4984}{4359} y=\frac{-4984+25\sqrt{8093}i}{4359}
The equation is now solved.
87.564\left(y+1\right)^{2}=5+\left(y+1\right)\times 5+\left(y+1\right)^{2}\times 105
Variable y cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(y+1\right)^{2}, the least common multiple of \left(1+y\right)^{2},1+y.
87.564\left(y^{2}+2y+1\right)=5+\left(y+1\right)\times 5+\left(y+1\right)^{2}\times 105
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
87.564y^{2}+175.128y+87.564=5+\left(y+1\right)\times 5+\left(y+1\right)^{2}\times 105
Use the distributive property to multiply 87.564 by y^{2}+2y+1.
87.564y^{2}+175.128y+87.564=5+5y+5+\left(y+1\right)^{2}\times 105
Use the distributive property to multiply y+1 by 5.
87.564y^{2}+175.128y+87.564=10+5y+\left(y+1\right)^{2}\times 105
Add 5 and 5 to get 10.
87.564y^{2}+175.128y+87.564=10+5y+\left(y^{2}+2y+1\right)\times 105
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
87.564y^{2}+175.128y+87.564=10+5y+105y^{2}+210y+105
Use the distributive property to multiply y^{2}+2y+1 by 105.
87.564y^{2}+175.128y+87.564=10+215y+105y^{2}+105
Combine 5y and 210y to get 215y.
87.564y^{2}+175.128y+87.564=115+215y+105y^{2}
Add 10 and 105 to get 115.
87.564y^{2}+175.128y+87.564-215y=115+105y^{2}
Subtract 215y from both sides.
87.564y^{2}-39.872y+87.564=115+105y^{2}
Combine 175.128y and -215y to get -39.872y.
87.564y^{2}-39.872y+87.564-105y^{2}=115
Subtract 105y^{2} from both sides.
-17.436y^{2}-39.872y+87.564=115
Combine 87.564y^{2} and -105y^{2} to get -17.436y^{2}.
-17.436y^{2}-39.872y=115-87.564
Subtract 87.564 from both sides.
-17.436y^{2}-39.872y=27.436
Subtract 87.564 from 115 to get 27.436.
-\frac{4359}{250}y^{2}-39.872y=27.436
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{4359}{250}y^{2}-39.872y}{-\frac{4359}{250}}=\frac{27.436}{-\frac{4359}{250}}
Divide both sides of the equation by -\frac{4359}{250}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\left(-\frac{39.872}{-\frac{4359}{250}}\right)y=\frac{27.436}{-\frac{4359}{250}}
Dividing by -\frac{4359}{250} undoes the multiplication by -\frac{4359}{250}.
y^{2}+\frac{9968}{4359}y=\frac{27.436}{-\frac{4359}{250}}
Divide -39.872 by -\frac{4359}{250} by multiplying -39.872 by the reciprocal of -\frac{4359}{250}.
y^{2}+\frac{9968}{4359}y=-\frac{6859}{4359}
Divide 27.436 by -\frac{4359}{250} by multiplying 27.436 by the reciprocal of -\frac{4359}{250}.
y^{2}+\frac{9968}{4359}y+\left(\frac{4984}{4359}\right)^{2}=-\frac{6859}{4359}+\left(\frac{4984}{4359}\right)^{2}
Divide \frac{9968}{4359}, the coefficient of the x term, by 2 to get \frac{4984}{4359}. Then add the square of \frac{4984}{4359} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{9968}{4359}y+\frac{24840256}{19000881}=-\frac{6859}{4359}+\frac{24840256}{19000881}
Square \frac{4984}{4359} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{9968}{4359}y+\frac{24840256}{19000881}=-\frac{5058125}{19000881}
Add -\frac{6859}{4359} to \frac{24840256}{19000881} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{4984}{4359}\right)^{2}=-\frac{5058125}{19000881}
Factor y^{2}+\frac{9968}{4359}y+\frac{24840256}{19000881}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{4984}{4359}\right)^{2}}=\sqrt{-\frac{5058125}{19000881}}
Take the square root of both sides of the equation.
y+\frac{4984}{4359}=\frac{25\sqrt{8093}i}{4359} y+\frac{4984}{4359}=-\frac{25\sqrt{8093}i}{4359}
Simplify.
y=\frac{-4984+25\sqrt{8093}i}{4359} y=\frac{-25\sqrt{8093}i-4984}{4359}
Subtract \frac{4984}{4359} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}