Solve for x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
x=\frac{25}{29}\approx 0.862068966
Graph
Share
Copied to clipboard
87x^{2}-365x+250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-365\right)±\sqrt{\left(-365\right)^{2}-4\times 87\times 250}}{2\times 87}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 87 for a, -365 for b, and 250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-365\right)±\sqrt{133225-4\times 87\times 250}}{2\times 87}
Square -365.
x=\frac{-\left(-365\right)±\sqrt{133225-348\times 250}}{2\times 87}
Multiply -4 times 87.
x=\frac{-\left(-365\right)±\sqrt{133225-87000}}{2\times 87}
Multiply -348 times 250.
x=\frac{-\left(-365\right)±\sqrt{46225}}{2\times 87}
Add 133225 to -87000.
x=\frac{-\left(-365\right)±215}{2\times 87}
Take the square root of 46225.
x=\frac{365±215}{2\times 87}
The opposite of -365 is 365.
x=\frac{365±215}{174}
Multiply 2 times 87.
x=\frac{580}{174}
Now solve the equation x=\frac{365±215}{174} when ± is plus. Add 365 to 215.
x=\frac{10}{3}
Reduce the fraction \frac{580}{174} to lowest terms by extracting and canceling out 58.
x=\frac{150}{174}
Now solve the equation x=\frac{365±215}{174} when ± is minus. Subtract 215 from 365.
x=\frac{25}{29}
Reduce the fraction \frac{150}{174} to lowest terms by extracting and canceling out 6.
x=\frac{10}{3} x=\frac{25}{29}
The equation is now solved.
87x^{2}-365x+250=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
87x^{2}-365x+250-250=-250
Subtract 250 from both sides of the equation.
87x^{2}-365x=-250
Subtracting 250 from itself leaves 0.
\frac{87x^{2}-365x}{87}=-\frac{250}{87}
Divide both sides by 87.
x^{2}-\frac{365}{87}x=-\frac{250}{87}
Dividing by 87 undoes the multiplication by 87.
x^{2}-\frac{365}{87}x+\left(-\frac{365}{174}\right)^{2}=-\frac{250}{87}+\left(-\frac{365}{174}\right)^{2}
Divide -\frac{365}{87}, the coefficient of the x term, by 2 to get -\frac{365}{174}. Then add the square of -\frac{365}{174} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{365}{87}x+\frac{133225}{30276}=-\frac{250}{87}+\frac{133225}{30276}
Square -\frac{365}{174} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{365}{87}x+\frac{133225}{30276}=\frac{46225}{30276}
Add -\frac{250}{87} to \frac{133225}{30276} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{365}{174}\right)^{2}=\frac{46225}{30276}
Factor x^{2}-\frac{365}{87}x+\frac{133225}{30276}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{365}{174}\right)^{2}}=\sqrt{\frac{46225}{30276}}
Take the square root of both sides of the equation.
x-\frac{365}{174}=\frac{215}{174} x-\frac{365}{174}=-\frac{215}{174}
Simplify.
x=\frac{10}{3} x=\frac{25}{29}
Add \frac{365}{174} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}