Evaluate
\frac{867209}{208}\approx 4169.274038462
Factor
\frac{7 \cdot 123887}{2 ^ {4} \cdot 13} = 4169\frac{57}{208} = 4169.274038461538
Share
Copied to clipboard
\begin{array}{l}\phantom{208)}\phantom{1}\\208\overline{)867209}\\\end{array}
Use the 1^{st} digit 8 from dividend 867209
\begin{array}{l}\phantom{208)}0\phantom{2}\\208\overline{)867209}\\\end{array}
Since 8 is less than 208, use the next digit 6 from dividend 867209 and add 0 to the quotient
\begin{array}{l}\phantom{208)}0\phantom{3}\\208\overline{)867209}\\\end{array}
Use the 2^{nd} digit 6 from dividend 867209
\begin{array}{l}\phantom{208)}00\phantom{4}\\208\overline{)867209}\\\end{array}
Since 86 is less than 208, use the next digit 7 from dividend 867209 and add 0 to the quotient
\begin{array}{l}\phantom{208)}00\phantom{5}\\208\overline{)867209}\\\end{array}
Use the 3^{rd} digit 7 from dividend 867209
\begin{array}{l}\phantom{208)}004\phantom{6}\\208\overline{)867209}\\\phantom{208)}\underline{\phantom{}832\phantom{999}}\\\phantom{208)9}35\\\end{array}
Find closest multiple of 208 to 867. We see that 4 \times 208 = 832 is the nearest. Now subtract 832 from 867 to get reminder 35. Add 4 to quotient.
\begin{array}{l}\phantom{208)}004\phantom{7}\\208\overline{)867209}\\\phantom{208)}\underline{\phantom{}832\phantom{999}}\\\phantom{208)9}352\\\end{array}
Use the 4^{th} digit 2 from dividend 867209
\begin{array}{l}\phantom{208)}0041\phantom{8}\\208\overline{)867209}\\\phantom{208)}\underline{\phantom{}832\phantom{999}}\\\phantom{208)9}352\\\phantom{208)}\underline{\phantom{9}208\phantom{99}}\\\phantom{208)9}144\\\end{array}
Find closest multiple of 208 to 352. We see that 1 \times 208 = 208 is the nearest. Now subtract 208 from 352 to get reminder 144. Add 1 to quotient.
\begin{array}{l}\phantom{208)}0041\phantom{9}\\208\overline{)867209}\\\phantom{208)}\underline{\phantom{}832\phantom{999}}\\\phantom{208)9}352\\\phantom{208)}\underline{\phantom{9}208\phantom{99}}\\\phantom{208)9}1440\\\end{array}
Use the 5^{th} digit 0 from dividend 867209
\begin{array}{l}\phantom{208)}00416\phantom{10}\\208\overline{)867209}\\\phantom{208)}\underline{\phantom{}832\phantom{999}}\\\phantom{208)9}352\\\phantom{208)}\underline{\phantom{9}208\phantom{99}}\\\phantom{208)9}1440\\\phantom{208)}\underline{\phantom{9}1248\phantom{9}}\\\phantom{208)99}192\\\end{array}
Find closest multiple of 208 to 1440. We see that 6 \times 208 = 1248 is the nearest. Now subtract 1248 from 1440 to get reminder 192. Add 6 to quotient.
\begin{array}{l}\phantom{208)}00416\phantom{11}\\208\overline{)867209}\\\phantom{208)}\underline{\phantom{}832\phantom{999}}\\\phantom{208)9}352\\\phantom{208)}\underline{\phantom{9}208\phantom{99}}\\\phantom{208)9}1440\\\phantom{208)}\underline{\phantom{9}1248\phantom{9}}\\\phantom{208)99}1929\\\end{array}
Use the 6^{th} digit 9 from dividend 867209
\begin{array}{l}\phantom{208)}004169\phantom{12}\\208\overline{)867209}\\\phantom{208)}\underline{\phantom{}832\phantom{999}}\\\phantom{208)9}352\\\phantom{208)}\underline{\phantom{9}208\phantom{99}}\\\phantom{208)9}1440\\\phantom{208)}\underline{\phantom{9}1248\phantom{9}}\\\phantom{208)99}1929\\\phantom{208)}\underline{\phantom{99}1872\phantom{}}\\\phantom{208)9999}57\\\end{array}
Find closest multiple of 208 to 1929. We see that 9 \times 208 = 1872 is the nearest. Now subtract 1872 from 1929 to get reminder 57. Add 9 to quotient.
\text{Quotient: }4169 \text{Reminder: }57
Since 57 is less than 208, stop the division. The reminder is 57. The topmost line 004169 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4169.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}