Evaluate
\frac{289}{75}\approx 3.853333333
Factor
\frac{17 ^ {2}}{3 \cdot 5 ^ {2}} = 3\frac{64}{75} = 3.8533333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{225)}\phantom{1}\\225\overline{)867}\\\end{array}
Use the 1^{st} digit 8 from dividend 867
\begin{array}{l}\phantom{225)}0\phantom{2}\\225\overline{)867}\\\end{array}
Since 8 is less than 225, use the next digit 6 from dividend 867 and add 0 to the quotient
\begin{array}{l}\phantom{225)}0\phantom{3}\\225\overline{)867}\\\end{array}
Use the 2^{nd} digit 6 from dividend 867
\begin{array}{l}\phantom{225)}00\phantom{4}\\225\overline{)867}\\\end{array}
Since 86 is less than 225, use the next digit 7 from dividend 867 and add 0 to the quotient
\begin{array}{l}\phantom{225)}00\phantom{5}\\225\overline{)867}\\\end{array}
Use the 3^{rd} digit 7 from dividend 867
\begin{array}{l}\phantom{225)}003\phantom{6}\\225\overline{)867}\\\phantom{225)}\underline{\phantom{}675\phantom{}}\\\phantom{225)}192\\\end{array}
Find closest multiple of 225 to 867. We see that 3 \times 225 = 675 is the nearest. Now subtract 675 from 867 to get reminder 192. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }192
Since 192 is less than 225, stop the division. The reminder is 192. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}