Evaluate
\frac{173}{6}\approx 28.833333333
Factor
\frac{173}{2 \cdot 3} = 28\frac{5}{6} = 28.833333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)865}\\\end{array}
Use the 1^{st} digit 8 from dividend 865
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)865}\\\end{array}
Since 8 is less than 30, use the next digit 6 from dividend 865 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)865}\\\end{array}
Use the 2^{nd} digit 6 from dividend 865
\begin{array}{l}\phantom{30)}02\phantom{4}\\30\overline{)865}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}26\\\end{array}
Find closest multiple of 30 to 86. We see that 2 \times 30 = 60 is the nearest. Now subtract 60 from 86 to get reminder 26. Add 2 to quotient.
\begin{array}{l}\phantom{30)}02\phantom{5}\\30\overline{)865}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}265\\\end{array}
Use the 3^{rd} digit 5 from dividend 865
\begin{array}{l}\phantom{30)}028\phantom{6}\\30\overline{)865}\\\phantom{30)}\underline{\phantom{}60\phantom{9}}\\\phantom{30)}265\\\phantom{30)}\underline{\phantom{}240\phantom{}}\\\phantom{30)9}25\\\end{array}
Find closest multiple of 30 to 265. We see that 8 \times 30 = 240 is the nearest. Now subtract 240 from 265 to get reminder 25. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }25
Since 25 is less than 30, stop the division. The reminder is 25. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}