Evaluate
\frac{85}{6}\approx 14.166666667
Factor
\frac{5 \cdot 17}{2 \cdot 3} = 14\frac{1}{6} = 14.166666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)850}\\\end{array}
Use the 1^{st} digit 8 from dividend 850
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)850}\\\end{array}
Since 8 is less than 60, use the next digit 5 from dividend 850 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)850}\\\end{array}
Use the 2^{nd} digit 5 from dividend 850
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)850}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}25\\\end{array}
Find closest multiple of 60 to 85. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 85 to get reminder 25. Add 1 to quotient.
\begin{array}{l}\phantom{60)}01\phantom{5}\\60\overline{)850}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}250\\\end{array}
Use the 3^{rd} digit 0 from dividend 850
\begin{array}{l}\phantom{60)}014\phantom{6}\\60\overline{)850}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}250\\\phantom{60)}\underline{\phantom{}240\phantom{}}\\\phantom{60)9}10\\\end{array}
Find closest multiple of 60 to 250. We see that 4 \times 60 = 240 is the nearest. Now subtract 240 from 250 to get reminder 10. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }10
Since 10 is less than 60, stop the division. The reminder is 10. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}