Evaluate
\frac{17}{6}\approx 2.833333333
Factor
\frac{17}{2 \cdot 3} = 2\frac{5}{6} = 2.8333333333333335
Share
Copied to clipboard
\begin{array}{l}\phantom{300)}\phantom{1}\\300\overline{)850}\\\end{array}
Use the 1^{st} digit 8 from dividend 850
\begin{array}{l}\phantom{300)}0\phantom{2}\\300\overline{)850}\\\end{array}
Since 8 is less than 300, use the next digit 5 from dividend 850 and add 0 to the quotient
\begin{array}{l}\phantom{300)}0\phantom{3}\\300\overline{)850}\\\end{array}
Use the 2^{nd} digit 5 from dividend 850
\begin{array}{l}\phantom{300)}00\phantom{4}\\300\overline{)850}\\\end{array}
Since 85 is less than 300, use the next digit 0 from dividend 850 and add 0 to the quotient
\begin{array}{l}\phantom{300)}00\phantom{5}\\300\overline{)850}\\\end{array}
Use the 3^{rd} digit 0 from dividend 850
\begin{array}{l}\phantom{300)}002\phantom{6}\\300\overline{)850}\\\phantom{300)}\underline{\phantom{}600\phantom{}}\\\phantom{300)}250\\\end{array}
Find closest multiple of 300 to 850. We see that 2 \times 300 = 600 is the nearest. Now subtract 600 from 850 to get reminder 250. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }250
Since 250 is less than 300, stop the division. The reminder is 250. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}