Evaluate
\frac{85}{27}\approx 3.148148148
Factor
\frac{5 \cdot 17}{3 ^ {3}} = 3\frac{4}{27} = 3.1481481481481484
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)85}\\\end{array}
Use the 1^{st} digit 8 from dividend 85
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)85}\\\end{array}
Since 8 is less than 27, use the next digit 5 from dividend 85 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)85}\\\end{array}
Use the 2^{nd} digit 5 from dividend 85
\begin{array}{l}\phantom{27)}03\phantom{4}\\27\overline{)85}\\\phantom{27)}\underline{\phantom{}81\phantom{}}\\\phantom{27)9}4\\\end{array}
Find closest multiple of 27 to 85. We see that 3 \times 27 = 81 is the nearest. Now subtract 81 from 85 to get reminder 4. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }4
Since 4 is less than 27, stop the division. The reminder is 4. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}