Solve for θ
\theta =\frac{\sqrt{76288921}+75589}{3360}\approx 25.096235989
\theta =\frac{75589-\sqrt{76288921}}{3360}\approx 19.897216392
Graph
Share
Copied to clipboard
84\left(\theta -20\right)\times \frac{1}{5}\times 4200\left(\theta -25\right)=1.1\times 420\left(100-\theta \right)
Reduce the fraction \frac{200}{1000} to lowest terms by extracting and canceling out 200.
\frac{84}{5}\left(\theta -20\right)\times 4200\left(\theta -25\right)=1.1\times 420\left(100-\theta \right)
Multiply 84 and \frac{1}{5} to get \frac{84}{5}.
70560\left(\theta -20\right)\left(\theta -25\right)=1.1\times 420\left(100-\theta \right)
Multiply \frac{84}{5} and 4200 to get 70560.
\left(70560\theta -1411200\right)\left(\theta -25\right)=1.1\times 420\left(100-\theta \right)
Use the distributive property to multiply 70560 by \theta -20.
70560\theta ^{2}-3175200\theta +35280000=1.1\times 420\left(100-\theta \right)
Use the distributive property to multiply 70560\theta -1411200 by \theta -25 and combine like terms.
70560\theta ^{2}-3175200\theta +35280000=462\left(100-\theta \right)
Multiply 1.1 and 420 to get 462.
70560\theta ^{2}-3175200\theta +35280000=46200-462\theta
Use the distributive property to multiply 462 by 100-\theta .
70560\theta ^{2}-3175200\theta +35280000-46200=-462\theta
Subtract 46200 from both sides.
70560\theta ^{2}-3175200\theta +35233800=-462\theta
Subtract 46200 from 35280000 to get 35233800.
70560\theta ^{2}-3175200\theta +35233800+462\theta =0
Add 462\theta to both sides.
70560\theta ^{2}-3174738\theta +35233800=0
Combine -3175200\theta and 462\theta to get -3174738\theta .
\theta =\frac{-\left(-3174738\right)±\sqrt{\left(-3174738\right)^{2}-4\times 70560\times 35233800}}{2\times 70560}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 70560 for a, -3174738 for b, and 35233800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\theta =\frac{-\left(-3174738\right)±\sqrt{10078961368644-4\times 70560\times 35233800}}{2\times 70560}
Square -3174738.
\theta =\frac{-\left(-3174738\right)±\sqrt{10078961368644-282240\times 35233800}}{2\times 70560}
Multiply -4 times 70560.
\theta =\frac{-\left(-3174738\right)±\sqrt{10078961368644-9944387712000}}{2\times 70560}
Multiply -282240 times 35233800.
\theta =\frac{-\left(-3174738\right)±\sqrt{134573656644}}{2\times 70560}
Add 10078961368644 to -9944387712000.
\theta =\frac{-\left(-3174738\right)±42\sqrt{76288921}}{2\times 70560}
Take the square root of 134573656644.
\theta =\frac{3174738±42\sqrt{76288921}}{2\times 70560}
The opposite of -3174738 is 3174738.
\theta =\frac{3174738±42\sqrt{76288921}}{141120}
Multiply 2 times 70560.
\theta =\frac{42\sqrt{76288921}+3174738}{141120}
Now solve the equation \theta =\frac{3174738±42\sqrt{76288921}}{141120} when ± is plus. Add 3174738 to 42\sqrt{76288921}.
\theta =\frac{\sqrt{76288921}+75589}{3360}
Divide 3174738+42\sqrt{76288921} by 141120.
\theta =\frac{3174738-42\sqrt{76288921}}{141120}
Now solve the equation \theta =\frac{3174738±42\sqrt{76288921}}{141120} when ± is minus. Subtract 42\sqrt{76288921} from 3174738.
\theta =\frac{75589-\sqrt{76288921}}{3360}
Divide 3174738-42\sqrt{76288921} by 141120.
\theta =\frac{\sqrt{76288921}+75589}{3360} \theta =\frac{75589-\sqrt{76288921}}{3360}
The equation is now solved.
84\left(\theta -20\right)\times \frac{1}{5}\times 4200\left(\theta -25\right)=1.1\times 420\left(100-\theta \right)
Reduce the fraction \frac{200}{1000} to lowest terms by extracting and canceling out 200.
\frac{84}{5}\left(\theta -20\right)\times 4200\left(\theta -25\right)=1.1\times 420\left(100-\theta \right)
Multiply 84 and \frac{1}{5} to get \frac{84}{5}.
70560\left(\theta -20\right)\left(\theta -25\right)=1.1\times 420\left(100-\theta \right)
Multiply \frac{84}{5} and 4200 to get 70560.
\left(70560\theta -1411200\right)\left(\theta -25\right)=1.1\times 420\left(100-\theta \right)
Use the distributive property to multiply 70560 by \theta -20.
70560\theta ^{2}-3175200\theta +35280000=1.1\times 420\left(100-\theta \right)
Use the distributive property to multiply 70560\theta -1411200 by \theta -25 and combine like terms.
70560\theta ^{2}-3175200\theta +35280000=462\left(100-\theta \right)
Multiply 1.1 and 420 to get 462.
70560\theta ^{2}-3175200\theta +35280000=46200-462\theta
Use the distributive property to multiply 462 by 100-\theta .
70560\theta ^{2}-3175200\theta +35280000+462\theta =46200
Add 462\theta to both sides.
70560\theta ^{2}-3174738\theta +35280000=46200
Combine -3175200\theta and 462\theta to get -3174738\theta .
70560\theta ^{2}-3174738\theta =46200-35280000
Subtract 35280000 from both sides.
70560\theta ^{2}-3174738\theta =-35233800
Subtract 35280000 from 46200 to get -35233800.
\frac{70560\theta ^{2}-3174738\theta }{70560}=-\frac{35233800}{70560}
Divide both sides by 70560.
\theta ^{2}+\left(-\frac{3174738}{70560}\right)\theta =-\frac{35233800}{70560}
Dividing by 70560 undoes the multiplication by 70560.
\theta ^{2}-\frac{75589}{1680}\theta =-\frac{35233800}{70560}
Reduce the fraction \frac{-3174738}{70560} to lowest terms by extracting and canceling out 42.
\theta ^{2}-\frac{75589}{1680}\theta =-\frac{41945}{84}
Reduce the fraction \frac{-35233800}{70560} to lowest terms by extracting and canceling out 840.
\theta ^{2}-\frac{75589}{1680}\theta +\left(-\frac{75589}{3360}\right)^{2}=-\frac{41945}{84}+\left(-\frac{75589}{3360}\right)^{2}
Divide -\frac{75589}{1680}, the coefficient of the x term, by 2 to get -\frac{75589}{3360}. Then add the square of -\frac{75589}{3360} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\theta ^{2}-\frac{75589}{1680}\theta +\frac{5713696921}{11289600}=-\frac{41945}{84}+\frac{5713696921}{11289600}
Square -\frac{75589}{3360} by squaring both the numerator and the denominator of the fraction.
\theta ^{2}-\frac{75589}{1680}\theta +\frac{5713696921}{11289600}=\frac{76288921}{11289600}
Add -\frac{41945}{84} to \frac{5713696921}{11289600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\theta -\frac{75589}{3360}\right)^{2}=\frac{76288921}{11289600}
Factor \theta ^{2}-\frac{75589}{1680}\theta +\frac{5713696921}{11289600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\theta -\frac{75589}{3360}\right)^{2}}=\sqrt{\frac{76288921}{11289600}}
Take the square root of both sides of the equation.
\theta -\frac{75589}{3360}=\frac{\sqrt{76288921}}{3360} \theta -\frac{75589}{3360}=-\frac{\sqrt{76288921}}{3360}
Simplify.
\theta =\frac{\sqrt{76288921}+75589}{3360} \theta =\frac{75589-\sqrt{76288921}}{3360}
Add \frac{75589}{3360} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}