Evaluate
\frac{21}{10}=2.1
Factor
\frac{3 \cdot 7}{2 \cdot 5} = 2\frac{1}{10} = 2.1
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)84}\\\end{array}
Use the 1^{st} digit 8 from dividend 84
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)84}\\\end{array}
Since 8 is less than 40, use the next digit 4 from dividend 84 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)84}\\\end{array}
Use the 2^{nd} digit 4 from dividend 84
\begin{array}{l}\phantom{40)}02\phantom{4}\\40\overline{)84}\\\phantom{40)}\underline{\phantom{}80\phantom{}}\\\phantom{40)9}4\\\end{array}
Find closest multiple of 40 to 84. We see that 2 \times 40 = 80 is the nearest. Now subtract 80 from 84 to get reminder 4. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }4
Since 4 is less than 40, stop the division. The reminder is 4. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}