Evaluate
\frac{277}{19}\approx 14.578947368
Factor
\frac{277}{19} = 14\frac{11}{19} = 14.578947368421053
Share
Copied to clipboard
\begin{array}{l}\phantom{57)}\phantom{1}\\57\overline{)831}\\\end{array}
Use the 1^{st} digit 8 from dividend 831
\begin{array}{l}\phantom{57)}0\phantom{2}\\57\overline{)831}\\\end{array}
Since 8 is less than 57, use the next digit 3 from dividend 831 and add 0 to the quotient
\begin{array}{l}\phantom{57)}0\phantom{3}\\57\overline{)831}\\\end{array}
Use the 2^{nd} digit 3 from dividend 831
\begin{array}{l}\phantom{57)}01\phantom{4}\\57\overline{)831}\\\phantom{57)}\underline{\phantom{}57\phantom{9}}\\\phantom{57)}26\\\end{array}
Find closest multiple of 57 to 83. We see that 1 \times 57 = 57 is the nearest. Now subtract 57 from 83 to get reminder 26. Add 1 to quotient.
\begin{array}{l}\phantom{57)}01\phantom{5}\\57\overline{)831}\\\phantom{57)}\underline{\phantom{}57\phantom{9}}\\\phantom{57)}261\\\end{array}
Use the 3^{rd} digit 1 from dividend 831
\begin{array}{l}\phantom{57)}014\phantom{6}\\57\overline{)831}\\\phantom{57)}\underline{\phantom{}57\phantom{9}}\\\phantom{57)}261\\\phantom{57)}\underline{\phantom{}228\phantom{}}\\\phantom{57)9}33\\\end{array}
Find closest multiple of 57 to 261. We see that 4 \times 57 = 228 is the nearest. Now subtract 228 from 261 to get reminder 33. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }33
Since 33 is less than 57, stop the division. The reminder is 33. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}