Solve for y
y=\frac{53+5\sqrt{47}i}{166}\approx 0.319277108+0.20649562i
y=\frac{-5\sqrt{47}i+53}{166}\approx 0.319277108-0.20649562i
Share
Copied to clipboard
83y^{2}-53y+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-53\right)±\sqrt{\left(-53\right)^{2}-4\times 83\times 12}}{2\times 83}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 83 for a, -53 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-53\right)±\sqrt{2809-4\times 83\times 12}}{2\times 83}
Square -53.
y=\frac{-\left(-53\right)±\sqrt{2809-332\times 12}}{2\times 83}
Multiply -4 times 83.
y=\frac{-\left(-53\right)±\sqrt{2809-3984}}{2\times 83}
Multiply -332 times 12.
y=\frac{-\left(-53\right)±\sqrt{-1175}}{2\times 83}
Add 2809 to -3984.
y=\frac{-\left(-53\right)±5\sqrt{47}i}{2\times 83}
Take the square root of -1175.
y=\frac{53±5\sqrt{47}i}{2\times 83}
The opposite of -53 is 53.
y=\frac{53±5\sqrt{47}i}{166}
Multiply 2 times 83.
y=\frac{53+5\sqrt{47}i}{166}
Now solve the equation y=\frac{53±5\sqrt{47}i}{166} when ± is plus. Add 53 to 5i\sqrt{47}.
y=\frac{-5\sqrt{47}i+53}{166}
Now solve the equation y=\frac{53±5\sqrt{47}i}{166} when ± is minus. Subtract 5i\sqrt{47} from 53.
y=\frac{53+5\sqrt{47}i}{166} y=\frac{-5\sqrt{47}i+53}{166}
The equation is now solved.
83y^{2}-53y+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
83y^{2}-53y+12-12=-12
Subtract 12 from both sides of the equation.
83y^{2}-53y=-12
Subtracting 12 from itself leaves 0.
\frac{83y^{2}-53y}{83}=-\frac{12}{83}
Divide both sides by 83.
y^{2}-\frac{53}{83}y=-\frac{12}{83}
Dividing by 83 undoes the multiplication by 83.
y^{2}-\frac{53}{83}y+\left(-\frac{53}{166}\right)^{2}=-\frac{12}{83}+\left(-\frac{53}{166}\right)^{2}
Divide -\frac{53}{83}, the coefficient of the x term, by 2 to get -\frac{53}{166}. Then add the square of -\frac{53}{166} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{53}{83}y+\frac{2809}{27556}=-\frac{12}{83}+\frac{2809}{27556}
Square -\frac{53}{166} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{53}{83}y+\frac{2809}{27556}=-\frac{1175}{27556}
Add -\frac{12}{83} to \frac{2809}{27556} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{53}{166}\right)^{2}=-\frac{1175}{27556}
Factor y^{2}-\frac{53}{83}y+\frac{2809}{27556}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{53}{166}\right)^{2}}=\sqrt{-\frac{1175}{27556}}
Take the square root of both sides of the equation.
y-\frac{53}{166}=\frac{5\sqrt{47}i}{166} y-\frac{53}{166}=-\frac{5\sqrt{47}i}{166}
Simplify.
y=\frac{53+5\sqrt{47}i}{166} y=\frac{-5\sqrt{47}i+53}{166}
Add \frac{53}{166} to both sides of the equation.
x ^ 2 -\frac{53}{83}x +\frac{12}{83} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 83
r + s = \frac{53}{83} rs = \frac{12}{83}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{53}{166} - u s = \frac{53}{166} + u
Two numbers r and s sum up to \frac{53}{83} exactly when the average of the two numbers is \frac{1}{2}*\frac{53}{83} = \frac{53}{166}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{53}{166} - u) (\frac{53}{166} + u) = \frac{12}{83}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{12}{83}
\frac{2809}{27556} - u^2 = \frac{12}{83}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{12}{83}-\frac{2809}{27556} = \frac{1175}{27556}
Simplify the expression by subtracting \frac{2809}{27556} on both sides
u^2 = -\frac{1175}{27556} u = \pm\sqrt{-\frac{1175}{27556}} = \pm \frac{\sqrt{1175}}{166}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{53}{166} - \frac{\sqrt{1175}}{166}i = 0.319 - 0.206i s = \frac{53}{166} + \frac{\sqrt{1175}}{166}i = 0.319 + 0.206i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}