Solve for c
c=2\left(-9f+g-41\right)
Solve for f
f=\frac{g}{9}-\frac{c}{18}-\frac{41}{9}
Share
Copied to clipboard
-2g+18f+c=-82
Subtract 82 from both sides. Anything subtracted from zero gives its negation.
18f+c=-82+2g
Add 2g to both sides.
c=-82+2g-18f
Subtract 18f from both sides.
-2g+18f+c=-82
Subtract 82 from both sides. Anything subtracted from zero gives its negation.
18f+c=-82+2g
Add 2g to both sides.
18f=-82+2g-c
Subtract c from both sides.
18f=-c+2g-82
The equation is in standard form.
\frac{18f}{18}=\frac{-c+2g-82}{18}
Divide both sides by 18.
f=\frac{-c+2g-82}{18}
Dividing by 18 undoes the multiplication by 18.
f=\frac{g}{9}-\frac{c}{18}-\frac{41}{9}
Divide -82+2g-c by 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}